Skip to main content

Advertisement

Log in

Deep Learning for Extracting Dispersion Curves

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

High-frequency surface-wave methods have been widely used for surveying near-surface shear-wave velocities. A key step in high-frequency surface-wave methods is to acquire dispersion curves in the frequency–velocity domain. The traditional way to acquire the dispersion curves is to identify the dispersion energy and manually pick phase velocities by following energy peaks at different frequencies. A large number of dispersion curves need to be extracted for inversion, especially for surveys with long two-dimensional sections or large three-dimensional (3D) coverages. Human–machine interaction-based dispersion curves extraction, however, is still common, which is time-consuming. We developed a deep learning model, termed Dispersion Curves Network (DCNet), that can rapidly extract dispersion curves from dispersion images by treating dispersion curves extraction as an instance segmentation task. The accuracy of the dispersion curves extracted by our DCNet model is demonstrated by theoretical data. We used a 3D field application of ambient seismic noise to demonstrate the effectiveness and robustness of our method. The real-world results showed that the accuracy of the dispersion curves extracted from the field data using our method can achieve human-level performance and our method can meet the requirement of geoengineering surveys in rapidly extracting massive dispersion curves of surface waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abadi M, Barham P, Chen J, Chen Z, Davis A, Devin M et al (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX symposium on operating systems design and implementation, pp 265–283

  • Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  • Bai M, Urtasun R (2017) Deep watershed transform for instance segmentation. arXiv:1802.05591v1 [cs.CV]. https://arxiv.org/abs/1802.05591

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shaoiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260

    Google Scholar 

  • Boaga J, Vignoli G, Cassiani G (2011) Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis. J Geophys Eng 8(2):162–174

    Google Scholar 

  • Bohlen T, Kugler S, Klein G, Theilen F (2004) 1.5D inversion of lateral variation of Scholte wave dispersion. Geophysics 69(2):330–344

    Google Scholar 

  • Boiero D, Socco LV (2010) Retrieving lateral variations from surface wave dispersion curves. Geophys Prospect 58(6):977–996

    Google Scholar 

  • Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75

    Google Scholar 

  • Chen H, Sun K, Tian Z, Shen C, Huang Y, Yan Y (2020) BlendMask: top-down meets bottom-up for instance segmentation. arXiv:2001.00309v1 [cs.CV]. https://arxiv.org/abs/2001.00309

  • Cheng F, Xia J, Xu Y, Xu Z, Pan Y (2015) A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves. J Appl Geophys 117:126–135

    Google Scholar 

  • Cheng F, Xia J, Luo Y, Xu Z, Wang L, Shen C, Liu R, Pan Y, Mi B, Hu Y (2016) Multichannel analysis of passive surface waves based on cross-correlations. Geophysics 81(5):EN57–EN66

    Google Scholar 

  • Cheng F, Xia J, Xu Z, Mi B (2018a) Frequency-wavenumber (FK)-based data selection in high-frequency passive surface wave survey. Surv Geophys 39(4):661–682

    Google Scholar 

  • Cheng F, Xia J, Xu Z, Hu Y, Mi B (2018b) Automated data selection in the Tau-p domain: application to passive surface wave imaging. Surv Geophys 40(5):1211–1228

    Google Scholar 

  • Dai J, He K, Sun J (2015) Instance-aware semantic segmentation via multi-task network cascades. arXiv:1512.04412v1 [cs.CV]. https://arxiv.org/abs/1512.04412

  • Dai T, Hu Y, Ning L, Cheng F, Pang J (2018a) Effects due to aliasing on the surface-wave extraction and suppression in frequency-velocity domain. J Appl Geophys 158:71–81

    Google Scholar 

  • Dai T, Xia J, Ning L (2018b) Extracting dispersion curves using semantic segmentation of fully convolutional networks. In: Proceeding of 8th international conference on environmental and engineering geophysics, pp 150–155

  • Daley T, Freifeld B, Ajo-Frankline J, Dou S, Pevzner R, Shulakova V, Kashikar S, Miller D, Götz J, Henninges J, Lüth S (2013) Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead Edge 32(6):699–706

    Google Scholar 

  • De Brabandere B, Neven D, Van Gool L (2017) Semantic instance segmentation with a discriminative loss function. arXiv:1708.02551v1 [cs.CV]. https://arxiv.org/abs/1708.02551

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd international conference on knowledge discovery and data mining (KDD-96)

  • Evgeniou T, Pontil M (2004) Regularized multi-task learning. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, pp 109–117

  • Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface-wave methods for seismic site characterization. Surv Geophys 32:777–825

    Google Scholar 

  • Groos JC, Bussat S, Ritter JRR (2012) Performance of different processing schemes in seismic noise cross-correlations. Geophys J Int 188:498–512

    Google Scholar 

  • He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. arXiv:1703.06870 [cs.CV]. https://arxiv.org/abs/1703.06870

  • Howard AG (2013) Some improvements on deep convolutional neural network based image classification. arXiv:1312.5402 [cs.CV]. https://arxiv.org/abs/1312.5402

  • Hu Y, Wang L, Cheng F, Luo Y, Shen C, Mi B (2016) Ground-roll noise extraction and suppression using high-resolution linear Radon transform. J Appl Geophys 128:8–17

    Google Scholar 

  • Ikeda T, Tsuji T (2015) Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO2 storage site. Int J Greenhouse Gas Control 39:107–118

    Google Scholar 

  • Ikeda T, Tsuji T, Matsuoka T (2013) Window-controlled CMP cross-correlation analysis for surface waves in laterally heterogeneous media. Geophysics 78(6):EN96–EN105

    Google Scholar 

  • Ivanov J, Miller RD, Lacombe P, Johnson CD, Lane JW (2006) Delineating a shallow fault zone and dipping bedrock strata using multi-channel analysis of surface waves with a land streamer. Geophysics 71(5):A39–A42

    Google Scholar 

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG]. https://arxiv.org/abs/1412.6980

  • Lawrence JF, Denolle M, Seats KJ, Prieto G (2013) A numeric evaluation of attenuation from ambient noise correlation functions. J Geophys Res Solid Earth 188(12):6134–6145

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  • Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol Soc Am 91(2):347–364

    Google Scholar 

  • Luo Y, Xia J, Liu J, Liu Q, Xu S (2007) Joint inversion of high-frequency surface waves with fundamental and higher modes. J Appl Geophys 62(4):375–384

    Google Scholar 

  • Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform. Pure Apply Geophys 165(5):903–922

    Google Scholar 

  • Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2009a) Rayleigh-wave mode separation by high-resolution linear Radon transform. Geophys J Int 179(1):254–264

    Google Scholar 

  • Luo Y, Xia J, Liu J, Xu Y, Liu Q (2009b) Research on the middle-of receiver-spread assumption of the MASW method. Soil Dyn Earthq Eng 29:71–79

    Google Scholar 

  • Luo Y, Xia J, Xu Y, Zeng C, Liu J (2010) Finite-difference modeling and dispersion analysis of high-frequency Love waves for near-surface applications. Pure Appl Geophys 167:1525–1536

    Google Scholar 

  • Mao B, Han L, Feng Q, Yin Y (2019) Subsurface velocity inversion from deep learning-based data assimilation. J Appl Geophys 167:172–179

    Google Scholar 

  • McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46:869–874

    Google Scholar 

  • Mi B, Xia J, Shen C, Wang L, Hu Y, Cheng F (2017) Horizontal resolution of multichannel analysis of surface waves. Geophysics 82(3):EN51–EN66

    Google Scholar 

  • Mi B, Xia J, Bradford JH, Shen C (2020) Estimating near-surface shear-wave-velocity structures via multichannel analysis of Rayleigh and Love waves: an experiment at the Boise Hydrogeophysical research site. Surv Geophys. https://doi.org/10.1007/s10712-019-09582-4

    Article  Google Scholar 

  • Neven D, De Brabandere B, Georgoulis S, Proesmans M, Van Gool L (2018) Towards end-to-end lane detection: an instance segmentation approach. arXiv:1802.05591 [cs.CV]. https://arxiv.org/abs/1802.05591

  • Ning ILC, Sava P (2018) High-resolution multicomponent distributed acoustic sensing. Geophys Prospect 66(6):1111–1122

    Google Scholar 

  • Okada H (2003) Microtremor survey method. Geophysical Monograph Series, vol 12. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Ovcharenko O, Kazei V, Kalita M, Peter D, Alkhalifah T (2019) Deep learning for low-frequency extrapolation from multi-offset seismic data. Geophysics 84(6):R1001–R1013

    Google Scholar 

  • Pan Y, Xia J, Xu Y, Gao L (2016a) Multichannel analysis of Love waves in a 3D seismic acquisition system. Geophysics 81:EN67–EN74

    Google Scholar 

  • Pan Y, Xia J, Xu Y, Xu Z, Cheng F, Xu H, Gao L (2016b) Delineating shallow S-wave velocity structure using multiple ambient-noise surface-wave methods: an example from western Junggar, China. Bull Seismol Soc Am 106(2):327–336

    Google Scholar 

  • Pan Y, Schaneng S, Steinweg T, Bohlen T (2018) Estimating S-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves—a field study. J Appl Geophys 159:532–539

    Google Scholar 

  • Pan Y, Gao L, Bohlen T (2019) High-resolution characterization of near-surface structures by surface-wave inversions: from dispersion curve to full waveform. Surv Geophys 40:167–195

    Google Scholar 

  • Pang J, Cheng F, Shen C, Dai T, Ning L, Zhang K (2019) Automatic passive data selection in time domain for imaging near-surface surface waves. J Appl Geophys 162:108–117

    Google Scholar 

  • Park CB, Miller RD (2008) Roadside passive multichannel analysis of surface waves (MASW). J Eng Environ Geophys 13(1):1–11

    Google Scholar 

  • Park CB, Miller M, Xia J (1998) Imaging dispersion curves of surface waves on multi-channel record. In: Society of Exploration and Geophysics (SEG), 68th Annual Meeting, New Orleans, Louisiana, pp 1377–1380

  • Paszke A, Chaurasia A, Kim S, Culurciello E (2016) ENet: a deep neural network architecture for real-time semantic segmentation. arXiv:1606.02147 [cs.CV]. http://arxiv.org/abs/1606.02147

  • Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4(2):e1700578

    Google Scholar 

  • Pilz M, Parolai S, Bindi D (2013) Three-dimensional passive imaging of complex seismic fault systems: evidence of surface traces of the Issyk-Ata fault (Kyrgyzstan). Geophys J Int 194:1955–1965

    Google Scholar 

  • Ren M, Zemel RS (2017) End-to-end instance segmentation with recurrent attention. arXiv:1605.09410 [cs.CV]. http://arxiv.org/abs/1605.09410

  • Romera-Paredes B, Torr PHS (2016) Recurrent instance segmentation. arXiv:1511.08250 [cs.CV]. http://arxiv.org/abs/1511.08250

  • Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv:1706.05098 [cs.CV]. http://arxiv.org/abs/1706.05098

  • Ryden N, Park CB (2006) Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics 71(4):R49–R58

    Google Scholar 

  • Schwab FA, Knopoff L (1972) Fast surface wave and free mode computations. In: Bolt BA (ed) Methods in computational physics. Academic Press, New York, pp 87–180

    Google Scholar 

  • Shen C (2014) Automatically picking dispersion curves in high-frequency surface-wave method. Master Thesis, China University of Geosciences (Wuhan), Wuhan, Hubei, China

  • Shen C, Wang A, Wang L, Xu Z, Cheng F (2015) Resolution equivalence of dispersion-imaging methods for noise-free high-frequency surface-wave data. J Appl Geophys 122:167–171

    Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [Cs]. http://arxiv.org/abs/1409.1556

  • Socco LV, Boiero D (2008) Improved Monte Carlo inversion of surface wave data. Geophys Prospect 56(3):357–371

    Google Scholar 

  • Socco LV, Foti S, Boiero D (2010) Surface-wave analysis for building near-surface velocity models—established approaches and new perspectives. Geophysics 75(5):A83–A102

    Google Scholar 

  • Song X, Zeng X, Thurber C, Wang HF (2019) Imaging shallow structure with active-source surface wave signal recorded by distributed acoustic sensing arrays. Earthq Sci 31:208–214

    Google Scholar 

  • Taipodia J, Dey A, Gaj S, Baglari D (2020) Quantification of the resolution of dispersion image in active MASW survey and automated extraction of dispersion curve. Comput Geosci 135:104360. https://doi.org/10.1016/j.cageo.2019.104360

    Article  Google Scholar 

  • Wang F, Chen S (2019) Residual learning of deep convolutional neural network for seismic random noise attenuation. IEEE Geosci Remote Sens Lett 16(8):1314–1318

    Google Scholar 

  • Wang J, Xiao Z, Liu C, Zhao D, Yao Z (2019) Deep learning for picking seismic arrival times. J Geophys Res Solid Earth. https://doi.org/10.1029/2019JB017536

    Article  Google Scholar 

  • Wu X, Liang L, Shi Y, Geng Z, Fomel S (2019) Multitask learning for local seismic image processing: fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophys J Int 219:2097–2109

    Google Scholar 

  • Xia J (2014) Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods. J Appl Geophys 103:140–151

    Google Scholar 

  • Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics 64(3):691–700

    Google Scholar 

  • Xia J, Miller RD, Park CB, Hunter JA, Harris JB, Ivanov J (2002) Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements. Soil Dyn Earthq Eng 22(3):181–190

    Google Scholar 

  • Xia J, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and higher modes. J Appl Geophys 52(1):45–57

    Google Scholar 

  • Xia J, Xu Y, Miller RD (2007) Generating image of dispersive energy by frequency decomposition and slant stacking. Pure Apply Geophys 164(5):941–956

    Google Scholar 

  • Xia J, Xu Y, Luo Y, Miller RD, Cakir R, Zeng C (2012) Advantages of using Multichannel Analysis of Love Waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33:841–860

    Google Scholar 

  • Yang F, Ma J (2019) Deep-learning inversion: a next-generation seismic velocity model building method. Geophysics 84(4):R583–R599

    Google Scholar 

  • Yilmaz Ö (1987) Seismic data processing. Society of Exploration Geophysicists, Tulsa, p 526

    Google Scholar 

  • Yin X, Xu H, Wang L, Hu Y, Shen C, Sun S (2016) Improving horizontal resolution of high-frequency surface-wave methods using travel-time tomography. J Appl Geophys 126:42–51

    Google Scholar 

  • Zachary ER, Men-Andrin M, Egill H, Thomas HH (2018) Generalized seismic phase detection with deep learning. Bull Seismol Soc Am 108(5A):2894–2901

    Google Scholar 

  • Zeng C, Xia J, Miller RD, Tsoflias GP (2011) Application of the multiaxial perfectly matched layer to near-surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52

    Google Scholar 

  • Zhang Z, Alkhalifah T (2019a) Wave-equation Rayleigh-wave dispersion inversion using fundamental and higher modes. Geophysics 84(4):EN57–EN65

    Google Scholar 

  • Zhang Z, Alkhalifah T (2019b) Regularized elastic full waveform inversion using deep learning. Geophysics 84(5):R741–R751

    Google Scholar 

  • Zhang G, Wang Z, Chen Y (2018) Deep learning for seismic lithology prediction. Geophys J Int 215:1368–1387

    Google Scholar 

  • Zhang Z, Alajami M, Alkhalifah T (2020) Wave-equation dispersion spectrum inversion for near-surface characterization using fiber-optics acquisition. Geophys J Int 222:907–918

    Google Scholar 

  • Zhou C, Xi C, Pang J, Liu Y (2018) Ambient noise data selection based on the asymmetry of cross-correlation functions for near surface applications. J Appl Geophys 159:803–813

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank associate editor Yu Jeffrey Gu and two anonymous reviewers for their constructive comments and suggestions. This study is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 41774115 and Nanjing Center of China Geological Survey under Grant No. DD20190281. The authors appreciate Binbin Mi, Jingyin Pang, Changjiang Zhou, Hongyu Zhang, and Xinhua Chen for their help in field data collection. The authors also appreciate Xiaojun Chang of Nanjing Center of China Geological Survey for their assistance in field data collection and providing borehole data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghai Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Xia, J., Ning, L. et al. Deep Learning for Extracting Dispersion Curves. Surv Geophys 42, 69–95 (2021). https://doi.org/10.1007/s10712-020-09615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09615-3

Keywords

Navigation