Skip to main content
Log in

Density Structure, Isostatic Balance and Tectonic Models of the Central Tien Shan

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

A new combined satellite-terrestrial model of the gravity field is used together with seismic data for construction of a density model of the lithosphere of the Central Tien Shan and for estimation of its isostatic balance. The Tien Shan is one of the most active intraplate orogens in the world, located about 1,500 km north of the convergence between Indian and Eurasian plate, and surrounded by stable Kazakh platform to the north and the Tarim block to the south. Although this area was extensively studied during recent decades, several principal problems, related to its structure and tectonics, remain unsolved up to now: (1) various geodynamic scenarios have been discussed so far to explain tectonic evolution, such as direct “crustal shortening,” intracontinental subduction and some others, but no definite evidence for any of them has been found. (2) Still, it is not clear why Tien Shan grows so far from the plate boundary at the Himalayan collision zone. Gravity modeling can provide valuable constraints to resolve these questions. The results of this study show that: (1) there exists a very strong deflection of the Tien Shan lithosphere from isostatic equilibrium. At the same time, the patterns of the isostatic anomalies are very different in the Western and Central Tien Shan. The latter one is characterized by much stronger variations. The best fit of the modeling results is found for the model according to which the Tarim plate partially underthrusts the Central Tien Shan; (2) negative density anomalies in the upper mantle under the central block possibly relate to magmatic underplating during the initial stage of the tectonic evolution. Therefore, the weak lithosphere could be the factor that initiates mountain building far away from the collision zone. Alternatively, this might be a gap after detachment of the eclogised lower crust and lithospheric lid, which is filled with the hot asthenospheric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdrakhmatov KY, Aldazhanov SA, Hager BH, Hamburger MW, Herring TA, Kalabav KB, Makarov VI, Molnar P, Panasyuk SV, Prilepin MT, Reilinger RE, Sadybakasov IS, Sou-ter BJ, Trapeznikov YA, Tsurkov VY, Zubovich AV (1996) Relatively recent construction of the Tien Shan inferred from GPS measurements of present day crustal deformation rates. Nature 34:450–453

    Article  Google Scholar 

  • Avouac JP, Tapponnier P (1993) Active thrusting and folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. J Geophys Res 98(B4):6755–6804

    Article  Google Scholar 

  • Beaumont C, Ellis S, Hamilton J, Fullsack P (1996) Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology 24(8):675–678

    Article  Google Scholar 

  • Bullen ME, Burbank DW, Garver JI (2003) Building the Northern Tien Shan: integrated thermal, structural, and topographic constraints. J Geol 111:149–165

    Article  Google Scholar 

  • Burov EV, Kogan MG, Lyon-Caen H, Molnar P (1990) Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan. Earth Planet Sci Lett 96:367–383

    Article  Google Scholar 

  • Burtman VS (1975) Structural geology of Variscan Tien Shan, USSR. Am J Sci 275-A:157–186

    Google Scholar 

  • Buslov MM, de Grave J, Bataleva EAV, Batalev VY (2007) Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data. J Asian Earth Sci 29:205–214

    Article  Google Scholar 

  • Buslov MM, Koch D, De Grave J (2008) Mesozoic—Cenozoic tectonics and geodynamics of the Altai, Tien Shan, and northern Kazakhstan on the results of apatite fission-track dating. Russ Geol Geophys 49(9):862–870

    Article  Google Scholar 

  • Chen C, Lu H, Jia D, Cai D, Wu S (1998) Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics 302:23–40

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • De Grave J, Buslov MM, Van den Haute P (2007) Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology. J Asian Earth Sci 29:188–204

    Article  Google Scholar 

  • De Grave J, Glorie S, Buslov MM, Izmer A, Fournier-Carrie A, Batalev VY, Vanhaecke F, Elburg M, Van den haute P (2011) The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: constraints by apatite and titanite thermochronometry and zircon U/Pb dating. Gondwana Res 20:745–763

    Article  Google Scholar 

  • De Grave J, Glorie S, Buslov MM, Stockli DF, McWilliams MO, Batalev VY, Van den Haute P (2013) Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res 23:998–1020

    Article  Google Scholar 

  • Delvaux D, Cloetingh S, Beekman F, Sokoutis D, Burov E, Buslov MM, Abdrakhmatov EE (2013) Basin evolution in a folding lithosphere: altai-Sayan and Tien Shan belts. Tectonophysics 602:194–222

    Article  Google Scholar 

  • Dobretsov NL (2003) Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt. Geologiya–Geofizika 44(1–2):5–27

    Google Scholar 

  • Dobretsov NL, Buslov MM, Delvaux D, Berzin NA, Ermikov VD (1996) Meso-and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plume. Int Geol Rev 38:430–466

    Article  Google Scholar 

  • Förste C, Shako R, Flechtner F, Dahle C, Abrykosov O, Neumayer K-H, Barthelmes F, König R, Bruinsma S-L, Marty J-C, Lemoine J-M, Balmino G, Biancale R (2012) A new release for EIGEN-6—the latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. General Assembly European Geosciences Union (Vienna, Austria 2012)

  • Freitag R, Kley J, Seib N, Voigt T (2006). Tectonics of the Northern Tien Shan in Kazakhstan: New Fission-Track Ages and Open Questions. AGU Fall Meeting 2006, Abstract #T23B-0485

  • Grachev AF (1999) Early Cenozoic magmatism and geodynamics of north Tien Shan. Izvestiya—Russian Academy of Sciences. Phys Solid Earth 35(10):815–839

    Google Scholar 

  • He G, Chen H (2004) Neogene coupling between Kuqa Basin and Southern Tien Shan Orogen Northwestern China. J Zhejiang Univ Sci 8:970–975

    Article  Google Scholar 

  • Hendrix MS, Dumitru TA, Graham SA (1994) Late Oligocene-early Miocene unroofing in the Chi-nese Tian Shan: an early effect of the India-Asia collision. Geology 22:487–490

    Article  Google Scholar 

  • Hindle D, Kley J, Oncken O, Sobolev S (2005) Crustal balance and crustal flux from shortening estimates in the Central Andes. Earth Plan Sci Let 230(1–2):113–124

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209:53–69

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Reigber Ch (2004) A new isostatic model of the lithosphere and gravity field. J Geodesy 78:368–385

    Article  Google Scholar 

  • Kaban MK, Tesauro M, Cloetingh S (2010) An integrated gravity model for Europe’s crust and upper mantle. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.04.041

    Google Scholar 

  • Kaus BJP, Becker TW (2006) Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. J. Int, Geophys. doi:10.1111/j.1365-246X.2006.03201.x

    Google Scholar 

  • Kenyon SC, Pavlis NK (1996) The development of a global surface gravity data base to be used in the joint DMA/GSFC geopotential model, In: Rapp RH, Cazenave AA, and Nerem RS (eds.), Global gravity field and its temporal variations, IAG Symposia, No. 116, Springer, Berlin, 82–91

  • Kosarev GL, Petersen NV, Vinnik LP, Roecker SW (1993) Receiver functions for the Tien Shan Analog Broadband Network: contrasts in the evolution of structures across the Talasso-Fergana Fault. J Geophys Res 98:4437–4448

    Article  Google Scholar 

  • Li Q, Gao R, Lu D, Li J, Fan J, Zhang Z, Liu W, Li Y, Yan Q, Li D (2002) Tarim undethrust beneath western Kunlun: evidence from wide-angle seismic sounding. J Asian Earth Sci 20:247–253

    Article  Google Scholar 

  • Molnar P, Houseman GA (2004) The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophys J Int 158:1134–1150

    Article  Google Scholar 

  • Molnar P, Houseman GA (2013) Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies. J Geophys Res 118:2544–2557

    Article  Google Scholar 

  • Molnar P, Qidong D (1984) Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. J Geophys Res 89:6203–6227

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1978) Active tectonics of Tibet. J Geophys Res 85:5361–5375

    Article  Google Scholar 

  • Mooney WD, Kaban MK (2010) The North American Upper Mantle: density, composition, and evolution. J Geophys Res 115:B12424. doi:10.1029/2010JB000866

    Article  Google Scholar 

  • Neil EA, Houseman GA (1999) Raleygh-Taylor instability of the upper mantle and its role in intraplate orogeny. Geophys J Int 138:89–107

    Article  Google Scholar 

  • Ni J (1978) Contempory tectonics in the Tien Shan region. Earth Planet Sci Lett 41:347–354

    Article  Google Scholar 

  • Oreshin S, Vinnik L, Peregoudov D, Roecker S (2002) Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions. Geophys Res Lett 29:32-1–32-4

    Article  Google Scholar 

  • Poupinet G, Avouac JP, Jiang M, Wei S, Kissling E, Herquel G, Guilbert J, Paul A, Wittlinger G, Su H, Thomas JC (2002) Intracontinental subduction and Palaeozoic inheritance of the lithosphere suggested by a teleseismic experiment across the Chinese Tien Shan. Terra Nova 14:18–24

    Article  Google Scholar 

  • Quinlan G, Beaumont C, Hall J (1993) Tectonic model for crustal seismic reflectivity patterns in compressional orogens. Geology 21(7):663–666

    Article  Google Scholar 

  • Reigber Ch, Michel GW, Galas R, Angermann D, Klotz J, Chen JY, Papschev A, Arslanov R, Tzurkov VE, Ishanov MC (2001) New space geodetic constraints on the distribution of deformation in Central Asia. Earth Planet Sci Lett 191:157–165

    Article  Google Scholar 

  • Replumaz A, Negredo AM, Guillot S, Villasenor A (2009) Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics xxx. doi:10.1016/j.tecto.2009.10.007

  • Roecker SW, Sabitova TM, Vinnik LP, Burmakov YA, Golvanov MI, Mamatkanova R, Muni-rova L (1993) Three-dimensional elastic wave velocity structure of the Western and Central Tien Shan. J Geophys Res 98:15779–15795

    Article  Google Scholar 

  • Schneider FM, Yuan X, Schurr B, Mechie J, Sippl C, Haberland C, Minaev V, Oimahmadov I, Gadoev M, Radjabov N, Abdybachaev U, Orunbaev S, Negmatullaev S (2013) Seismic imaging of subducting continental lower crust beneath the Pamir. Earth Planet Sci Lett 375:101–112. doi:10.1016/j.epsl.2013.05.015

    Article  Google Scholar 

  • Sobel ER, Osnik M, Burbank D, Mikolaichuk A (2006) Exhumation of basement-cored uplifts: exampel of the Kyrgyz range quantified with fission track thermochronology. Tectonics 25:1–17. TC2008, doi:10.1029/2005TC001809

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620

    Article  Google Scholar 

  • Stolk W, Kaban MK, Beekman F, Tesauro M, Mooney WD, Cloetingh S (2013) High resolution regional crustal models from irregularly distributed data: application to Asia and adjacent areas. Tectonophysics. Accepted paper in press. Available online since 31 January 2013

  • Trifonov VG, Artyushkov EV, Dodonov AE, Bachmanov DM, Mikolaichuk AV, Vishnyakov FA (2008) Pliocene-Quaternary orogeny in the Central Tien Shan. Russ Geol Geophys 49:98–112

    Article  Google Scholar 

  • Vinnik LP, Reigber C, Aleshin IM, Kosarev GL, Kaban MK, Oreshin SI, Roecker SW (2004) Receiver function tomography of the central Tien Shan. Earth Planet Sci Lett 225:131–146

    Article  Google Scholar 

  • Vinnik LP, Aleshin IM, Kaban MK, Kiselev SG, Kosarev GL, Oreshin SI, Reigber Ch (2006) Crust and Mantle of the Tien Shan from data of the receiver function tomography. Izvestiya Phys Solid Earth 42(8):639–651

    Article  Google Scholar 

  • Wang Y, Mooney WD, Yuan X, Coleman RG (2003) The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China. J Geophys Res 108(B6):2322

    Article  Google Scholar 

  • Wang C, Yang Z, Luo H, Mooney WD (2004) Crustal structure of the northern margin of the east-ern Tien Shan, China, and its tectonic implications for the 1906 M ~ 7.7 Manas earthquake. Earth Planet Sci Lett 223:187–202

    Article  Google Scholar 

  • Xu Y, Liu F, Liu J, Chen H (2002) Crust and upper mantle structure beneath western China from P wave travel time tomography. J Geophys Res 107(B10):2220

    Article  Google Scholar 

  • Yakovlev FL, Yunga SL (2001) Crustal shortening during mountain building: a case study in the Pa-mir–Tien Shan and Altay-Mongolia region. Rus J Earth Sci 3(5):317–332

    Article  Google Scholar 

  • Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488:293–325

    Article  Google Scholar 

  • Zabelina IV, Koulakov IYu, Buslov MM (2013) Deep mechanisms in the Kyrgyz Tien Shan orogen (from results of seismic tomography). Rus Geol Geophys 54(7):695–706

    Article  Google Scholar 

  • Zhang P et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Article  Google Scholar 

  • Zhao C, Kennett BLN, Furumura T (2003) Contrasts in regional seismic wave propagation to station WMQ. Geophys J Int 155:44–56

    Article  Google Scholar 

  • Zhao J, Mooney WD, Zhang X, Li Z, Jin Z, Okaya N (2006) Crustal structure across the Altyn Tagh range at the northern margin of the Tibetan plateau and tectonic implications. Earth Planet Sci Lett 241:804–814

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jürgen Kusche and anonymous reviewers for very constructive comments, which helped to improve the paper. We acknowledge funding from DFG (German Research Foundation), SPP-1257, Grant KA2669/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail K. Kaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaban, M.K., Yuanda, T.R. Density Structure, Isostatic Balance and Tectonic Models of the Central Tien Shan. Surv Geophys 35, 1375–1391 (2014). https://doi.org/10.1007/s10712-014-9298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9298-7

Keywords

Navigation