Skip to main content
Log in

Chern–Simons theory and cohomological invariants of representation varieties

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove a general local rigidity theorem for pull-backs of homogeneous forms on reductive symmetric spaces under representations of discrete groups. One application of the theorem is that the volume of a closed manifold locally modelled on a reductive homogeneous space G/H is constant under deformation of the G/H-structure. The proof elaborates on an argument given by Labourie for closed anti-de Sitter 3-manifolds. The core of the work is a reinterpretation of old results of Cartan, Chevalley and Borel, showing that the algebra of G-invariant forms on G/H is generated by “Chern–Weil forms” and “Chern–Simons forms”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. While the complexification is perfectly well-defined at the level of Lie algebras, there is something arbitrary in our definition of the complexification of a Lie group. For instance, the complexification of \(\textrm{SL}(k,\mathbb {R})\) is the adjoint group \(\textrm{PSL}(k,\mathbb {C})\). We did not settle with a more algebraic definition because we want to consider connected simple real Lie groups such as \(\textrm{SO}_\circ (p,1)\), which are not necessarily algebraic.

  2. Note that both connections are indeed bi-invariant because the right-translate of a left-invariant vector field is another left-invariant vector field.

  3. Note that this does not require \(\textrm{Hom}(\pi _1(M),G)\) to be smooth, since we do not assume that these smooth arcs are immersed.

References

  1. Alessandrini, D., Li, Q.: AdS \(3\)-manifolds and Higgs bundles. Proc. Am. Math. Soc. 146(2), 845–860 (2018)

    Article  MathSciNet  Google Scholar 

  2. Barbot, T., Bonsante, F., Danciger, J., Goldman, W.M., Guéritaud, F., Kassel, F., Krasnov, K., Schlenker, J.-M., Zeghib, A.: Some open questions in anti-de Sitter geometry. (2012). arXiv:1205.6103

  3. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of \({\rm SL} (3)\). Geom. Topol. 18(4), 1911–1971 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bergeron, N., Gelander, T.: A note on local rigidity. Geom. Dedicata 107(1), 111–131 (2004)

    Article  MathSciNet  Google Scholar 

  5. Besson, G., Courtois, G., Gallot, S.: Inégalités de Milnor-Wood géométriques. Comment. Math. Helv. 82, 753–803 (2007)

    Article  MathSciNet  Google Scholar 

  6. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 57(1), 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  7. Bradlow, S.B., García-Prada, O., Gothen, P.B.: Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces. Geom. Dedicata 122, 185–213 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bucher, M., Burger, M., Iozzi, A.: Integrality of volumes of representations. Math. Ann. 381, 209–242 (2021)

  9. Bucher, M., Burger, M., Iozzi, A.: The bounded Borel class and \(3\)-manifold groups. Duke Math. J. 167(17), 3129–3169 (2018)

    Article  MathSciNet  Google Scholar 

  10. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. Ann. Math 172(1), 517–566 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cartan, H.: La transgression dans un groupe de Lie et dans un espace fibré principal, pp. 57–71. In Colloque de Topologie, CBRM, Bruxelles (1950)

    Google Scholar 

  12. Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99(1), 48–69 (1974)

    Article  MathSciNet  Google Scholar 

  13. Francaviglia, S.: Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. Int. Math. Res. Not. 2004(9), 425–459 (2004)

    Article  MathSciNet  Google Scholar 

  14. Garoufalidis, S., Thurston, D.P., Zickert, C.K.: The complex volume of \({\rm SL} (n,{\mathbb{C} })\)-representations of \(3\)-manifolds. Duke Math. J. 164(11), 2099–2160 (2015)

    Article  MathSciNet  Google Scholar 

  15. Goldman, W.M.: Nonstandard Lorentz space forms. J. Differ. Geom. 21(2), 301–308 (1985)

    Article  MathSciNet  Google Scholar 

  16. Goldman, W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)

    Article  MathSciNet  Google Scholar 

  17. Goncharov, A.: Volumes of hyperbolic manifolds and mixed tate motives. J. Am. Math. Soc. 12(2), 569–618 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)

    Article  MathSciNet  Google Scholar 

  19. Kassel, F.: Quotients compacts d’espaces homogènes réels ou \(p\)-adiques. PhD thesis, Université de Paris-Sud 11 (2009)

  20. Kim, S., Kim, I.: On deformation spaces of nonuniform hyperbolic lattices. Math. Proc. Cambridge Philos. Soc. 161(2), 283–303 (2016)

    Article  MathSciNet  Google Scholar 

  21. Kulkarni, R.S., Raymond, F.: \(3\)-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom. 21(2), 231–268 (1985)

    Article  MathSciNet  Google Scholar 

  22. Labourie, F.: On Tholozan’s volume formula for closed anti-de-Sitter 3-manifolds. Geom. Dedicata 218(31) (2024)

  23. Milnor, J.: On the existence of a connection with curvature zero. Commentarii Mathematici Helvetici 32, 215–223 (1958)

    Article  MathSciNet  Google Scholar 

  24. Richardson, R.: Compact real forms of a complex semi-simple lie algebra. J. Differ. Geom. 2(4), 411–419 (1968)

    Article  MathSciNet  Google Scholar 

  25. Salein, F.: Variétés anti-de Sitter de dimension 3 exotiques. Ann. Inst. Fourier 50(1), 257–284 (2000)

    Article  MathSciNet  Google Scholar 

  26. Tholozan, N.: Uniformisation des variétés pseudo-riemanniennes localement homogènes. PhD thesis, Université de Nice Sophia-Antipolis (2014)

  27. Tholozan, N.: Volume and non-existence of compact Clifford–Klein forms. Preprint (2016). arXiv:1509.04178

  28. Tholozan, N.: Dominating surface group representations and deforming closed anti-de Sitter \(3\)-manifolds. Geom. Topol. 21(1), 193–214 (2017)

    Article  MathSciNet  Google Scholar 

  29. Tholozan, N.: The volume of complete anti-de Sitter 3-manifolds. J. Lie Theory 28(3), 619–642 (2018)

    MathSciNet  Google Scholar 

  30. Toledo, D.: Representations of surface groups in complex hyperbolic space. J. Differ. Geom. 29(1), 125–133 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is very much indebted to François Labourie, who explained to me the nuts and bolts of Chern–Simons theory and how it could be used to prove volume rigidity of locally homogeneous manifolds. I thank him more generally for the inspiration that his work has been for my research. I am also thankful to Michelle Bucher and Marc Burger for their interest in this work and for pointing out several references. Finally, I thank the anonymous referee for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Tholozan.

Additional information

To François Labourie, for his 60th + $$\varepsilon $$ ε birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tholozan, N. Chern–Simons theory and cohomological invariants of representation varieties. Geom Dedicata 218, 82 (2024). https://doi.org/10.1007/s10711-024-00926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-024-00926-y

Keywords

Mathematics Subject Classification

Navigation