Skip to main content
Log in

A family of Andrews–Curtis trivializations via 4-manifold trisections

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

An R-link is an n-component link L in \(S^3\) such that Dehn surgery on L yields \(\#^n(S^1 \times S^2)\). Every R-link L gives rise to a geometrically simply-connected homotopy 4-sphere \(X_L\), which in turn can be used to produce a balanced presentation of the trivial group. Adapting work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-links L(pqc/d), where the pairs (pq) and (cd) are relatively prime and c is even. Within this family, \(L(3,2;2n/(2n+1))\) induces the infamous trivial group presentation \(\langle x,y \, | \, xyx=yxy, x^{n+1}=y^n \rangle \), a popular collection of potential counterexamples to the Andrews–Curtis conjecture for \(n \ge 3\). In this paper, we use 4-manifold trisections to show that the group presentations corresponding to a different subfamily, L(3, 2; 4/d), are Andrews–Curtis trivial for all d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akbulut, S., Kirby, R.: A potential smooth counterexample in dimension \(4\) to the Poincaré conjecture, the Schoenflies conjecture, and the Andrews–Curtis conjecture. Topology 24(4), 375–390 (1985). https://doi.org/10.1016/0040-9383(85)90010-2

    Article  MathSciNet  Google Scholar 

  2. Andrews, J.J., Curtis, M.L.: Free groups and handlebodies. Proc. Amer. Math. Soc. 16, 192–195 (1965). https://doi.org/10.2307/2033843

    Article  MathSciNet  Google Scholar 

  3. Burns, R.G., Macedońska, O.: Balanced presentations of the trivial group. Bull. Lond. Math. Soc. 25(6), 513–526 (1993). https://doi.org/10.1112/blms/25.6.513

    Article  MathSciNet  Google Scholar 

  4. Farb, B., Margalit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)

    Google Scholar 

  5. Fernández, X.: Morse Theory for Group Presentations. arXiv e-prints arXiv:1912.00115 (2019). https://doi.org/10.48550/arXiv.1912.00115

  6. Gay, D., Kirby, R.: Trisecting 4-manifolds. Geom. Topol. 20(6), 3097–3132 (2016). https://doi.org/10.2140/gt.2016.20.3097

    Article  MathSciNet  Google Scholar 

  7. Gompf, R.E.: Killing the Akbulut-Kirby \(4\)-sphere, with relevance to the Andrews–Curtis and Schoenflies problems. Topology 30(1), 97–115 (1991). https://doi.org/10.1016/0040-9383(91)90036-4

    Article  MathSciNet  Google Scholar 

  8. Gompf, R.E., Scharlemann, M., Thompson, A.: Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures. Geom. Topol. 14(4), 2305–2347 (2010). https://doi.org/10.2140/gt.2010.14.2305

    Article  MathSciNet  Google Scholar 

  9. Gompf, R.E., Stipsicz, A.I.: \(4\)-manifolds and Kirby calculus. In: Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence (1999). https://doi.org/10.1090/gsm/020. https://doi.org/10.1090/gsm/020

  10. Hoffman, H., Nakagawa, K., Potter, R., Zupan, A.: Knots in the fibers of generalized square knots. In preparation

  11. Meier, J., Schirmer, T., Zupan, A.: Classification of trisections and the generalized property R conjecture. Proc. Amer. Math. Soc. 144(11), 4983–4997 (2016). https://doi.org/10.1090/proc/13105

    Article  MathSciNet  Google Scholar 

  12. Meier, J., Zupan, A.: Presentations of the trivial group and generalized square knots. In preparation

  13. Meier, J., Zupan, A.: Bridge trisections of knotted surfaces in \(S^4\). Trans. Amer. Math. Soc. 369(10), 7343–7386 (2017). https://doi.org/10.1090/tran/6934

    Article  MathSciNet  Google Scholar 

  14. Meier, J., Zupan, A.: Characterizing Dehn surgeries on links via trisections. Proc. Natl. Acad. Sci. USA 115(43), 10887–10893 (2018). https://doi.org/10.1073/pnas.1717187115

    Article  MathSciNet  Google Scholar 

  15. Meier, J., Zupan, A.: Generalized square knots and homotopy 4-spheres. J. Differ. Geom. 122(1), 69–129 (2022). https://doi.org/10.4310/jdg/1668186788

    Article  MathSciNet  Google Scholar 

  16. Metzler, W.: Äquivalenzklassen von Gruppenbeschreibungen, Identitäten und einfacher Homotopietyp in niederen Dimensionen. In: Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, pp. 291–326. Cambridge Univ. Press, Cambridge-New York (1979)

  17. Metzler, W.: On the Andrews–Curtis conjecture and related problems. In: Combinatorial Methods in Topology and Algebraic Geometry (Rochester, N.Y., 1982), Contemp. Math., vol. 44, pp. 35–50. Amer. Math. Soc., Providence (1985). https://doi.org/10.1090/conm/044/813099. https://doi-org.libproxy.unl.edu/10.1090/conm/044/813099

  18. Miasnikov, A.D.: Genetic algorithms and the Andrews–Curtis conjecture. Internat. J. Algebra Comput. 9(6), 671–686 (1999). https://doi.org/10.1142/S0218196799000370

    Article  MathSciNet  Google Scholar 

  19. Myasnikov, A.D., Myasnikov, A.G., Shpilrain, V.: On the Andrews–Curtis equivalence. In: Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, pp. 183–198. Amer. Math. Soc., Providence (2002). https://doi.org/10.1090/conm/296/05074. https://doi.org/10.1090/conm/296/05074

  20. Panteleev, D., Ushakov, A.: Conjugacy search problem and the Andrews–Curtis conjecture. Groups Complex. Cryptol. 11(1), 43–60 (2019). https://doi.org/10.1515/gcc-2019-2005

    Article  MathSciNet  Google Scholar 

  21. Scharlemann, M.: Proposed property 2R counterexamples examined. Illinois J. Math. 60(1), 207–250 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Jeffrey Meier for helpful conversations and for comments on an earlier draft of this paper. AZ was supported by NSF awards DMS-1664578 and DMS-2005518 and a Simons Fellowship during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zupan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romary, E., Zupan, A. A family of Andrews–Curtis trivializations via 4-manifold trisections. Geom Dedicata 218, 45 (2024). https://doi.org/10.1007/s10711-024-00891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-024-00891-6

Keywords

Mathematics Subject Classification (2020)

Navigation