Skip to main content
Log in

The Dabkowski-Sahi invariant and 4-moves for links

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Dabkowski and Sahi defined an invariant of a link in the 3-sphere, which is preserved under 4-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish between the Dabkowski-Sahi invariants of given links. In this paper, we give a necessary condition for the existence of an isomorphism between the Dabkowski-Sahi invariant of a link and that of the corresponding trivial link. Using this condition, we provide a practical obstruction to a link to be trivial up to 4-moves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Since n and q can be chosen arbitrarily large, the condition \(j<\min \{n,q\}\) is no real restriction.

References

  1. Brittenham, M., Hermiller, S., Todd, R.G.: \(4\)-moves and the Dabkowski-Sahi invariant for knots. J. Knot Theory Ramif. 22(11), 1350069 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dabkowski, M.K., Jablan, S., Khan, N.A., Sahi, R.K.: On \(4\)-equivalence classes of knots and links of two components. J. Knot Theory Ramif. 20(1), 47–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Da̧bkowski, M.K., Przytycki, J.H.: Burnside obstructions to the Montesinos-Nakanishi \(3\)-move conjecture. Geom. Topol. 6, 355–360 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dabkowski, M.K., Przytycki, J.H.: Unexpected connections between Burnside groups and knot theory. Proc. Natl. Acad. Sci. U. S. A. 101(50), 17357–17360 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dabkowski, M.K., Sahi, R.K.: New invariant of \(4\)-moves. J. Knot Theory Ramif. 16(10), 1261–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fenn, R., Rimányi, R., Rourke, C.: The braid-permutation group. Topology 36(1), 123–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goussarov, M., Polyak, M., Viro, O.: Finite-type invariants of classical and virtual knots. Topology 39(5), 1045–1068 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kauffman, L.H.: Virtual knot theory. Eur. J. Combin. 20(7), 663–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirby, R.: Problems in low-dimensional topology. In: AMS/IP Stud. Adv. Math. Geometric topology (Athens, GA, 1993). Amer. Math. Soc., Providence (1997)

  10. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. Presentations of groups in terms of generators and relations, Reprint of the 1976 second edition. Dover Publications, Inc., Mineola, NY (2004)

  11. Meilhan, J.-B., Yasuhara, A.: Whitehead double and Milnor invariants. Osaka J. Math. 48(2), 371–381 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Milnor, J.: Link groups. Ann. Math. 59(2), 177–195 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milnor, J.: Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, pp. 280–306. Princeton University Press, Princeton (1957)

    Google Scholar 

  14. Miyazawa, H.A., Wada, K., Yasuhara, A.: Burnside groups and \(n\)-moves for links. Proc. Am. Math. Soc. 147(8), 3595–3602 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyazawa, H.A., Wada, K., Yasuhara, A.: Classification of string links up to \(2n\)-moves and link-homotopy. Ann. Inst. Fourier 71(3), 889–911 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nakanishi, Y., Suzuki, S.: On Fox’s congruence classes of knots. Osaka J. Math. 24(1), 217–225 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Nakanishi, Y.: On Fox’s congruence classes of knots. II. Osaka J. Math 27(1), 207–215 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Przytycki, J.H.: On Slavik Jablan’s work of \(4\)-moevs. J. Knot Theory Ramif. 25(9), 1641014 (2016)

    Article  MATH  Google Scholar 

  19. Vaughan-Lee, M.: The restricted Burnside problem. In: London Mathematical Society Monographs. New Series, 2nd edn. The Clarendon Press, Oxford University Press, New York (1993)

Download references

Acknowledgements

The authors would like to thank the referee for valuable comments on an early version of this paper, and in particular for suggesting us to work on 3-component links, which led to Theorem 3.4 and Proposition 4.4. The second author was supported by JSPS KAKENHI Grant Number JP21K20327. The third author was supported by JSPS KAKENHI Grant Number JP21K03237 and Waseda University Grant for Special Research Projects (Project number: 2021C-120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodai Wada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, H.A., Wada, K. & Yasuhara, A. The Dabkowski-Sahi invariant and 4-moves for links. Geom Dedicata 217, 46 (2023). https://doi.org/10.1007/s10711-023-00780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00780-4

Keywords

Mathematics Subject Classification

Navigation