Skip to main content
Log in

Spaces of knots in the solid torus, knots in the thickened torus, and links in the 3-sphere

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We similarly study spaces of unframed links in the 3-sphere, modulo rotations, and spaces of knots in the thickened torus. The subgroup of meridional rotations splits as a direct factor of the fundamental group of the space of any framed link except the unknot. Its generators can be viewed as generalizations of the Gramain loop in the space of long knots. Taking the quotient by certain such rotations relates the spaces we study. All of our results generalize previous work of Hatcher and Budney. We provide many examples and explicitly describe generators of fundamental groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Notes

  1. Up to 6 crossings, the number increases from 7 to 526 [22]. However, many of the examples we consider fall outside this range of crossing numbers, especially those involving satellite operations.

  2. The second author credits Rob Kusner for essentially pointing out this connection to him in 2012.

  3. Beware that the space of closed knots (respectively framed closed knots) is a subspace of \({\mathcal {L}}\) (respectively \(\widetilde{{\mathcal {L}}}\)), not \({\mathcal {K}}\) (respectively \(\widetilde{{\mathcal {K}}}\)). Our notation is not overloaded because we make no use of long links.

  4. Note that we are only using the connectedness of this space of diffeomorphisms, which can be deduced from Cerf’s result \(\pi _0\text {Diff}^+(S^3)=\{e\}\), obtained well before the proof of the Smale conjecture.

  5. Indeed, the linking number Lk of \(T_{p',q'}\) with a normal perturbation of \(T_{p',q'}\) on the torus satisfies \(Lk=Tw+Wr\), where Tw is twist and Wr is writhe [12, 52]. By writing \(T_{p',q'}\) as the closure of the appropriate \(p'\)-strand braid, \(Wr=q'(p'-1)\), the number of (positive) crossings. The twist Tw is the linking number with \(C_1\), which is \(q'\).

  6. The reader may find it amusing to realize \(g_F\) using a knotted belt with anchored ends.

  7. This \(D_2<D_4\) is of course the subgroup containing the \(180^\circ \) rotation and reflections across the coordinate axes. The isometry of M corresponding to a reflection of \({\mathbb {R}}^3\) (and an isotopy between mirror images of the knot) can be identified with a reflection across a diagonal in \(D_4\).

References

  1. Arnold, V.I.: Arnold’s Problems. PHASIS, Moscow 2004. Translated and Revised Edition of the 2000 Russian Original, With a Preface by V. Philippov, A. Yakivchik and M. Peters, Springer-Verlag, Berlin (2004)

    Google Scholar 

  2. Bellingeri, P., Bodin, A.: The braid group of a necklace. Math. Z. 283(3–4), 995–1010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Budney, R., Cohen, F.R.: On the homology of the space of knots. Geom. Topol. 13(1), 99–139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle, T., Hatcher, A.: Configuration spaces of rings and wickets. Comment. Math. Helv. 88(1), 131–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burde, G., Murasugi, K.: Links and Seifert fiber spaces. Duke Math. J. 37, 89–93 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathematics, vol. 107. Birkhäuser Boston Inc., Boston, MA (1993)

    Book  MATH  Google Scholar 

  7. Budney, R.: JSJ-decompositions of knot and link complements in the 3-sphere. L’enseignement Mathématique 2(52), 319–359 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Budney, R.: Little cubes and long knots. Topology 46(1), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Budney, R.: A family of embedding spaces. In: Groups, Homotopy and Configuration Spaces. Geometry & Topology Monographs, vol. 13, pp. 41–83. Geometry & Topology Publication, Coventry (2008)

  10. Budney, R.: Topology of knot spaces in dimension 3. Proc. Lond. Math. Soc. (3) 101(2), 477–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Budney, R.: An operad for splicing. J. Topol. 5(4), 945–976 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Călugăreanu, G.: L’intégrale de Gauss et l’analyse des nœuds tridimensionnels. Rev. Math. Pures Appl. 4, 5–20 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds. http://snappy.computop.org. 20 Feb 2020

  14. de Sá, E.C., Rourke, C.: The homotopy type of homeomorphisms of 3-manifolds. Bull. Am. Math. Soc. (N.S.) 1(1), 251–254 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chmutov, S., Goryunov, V., Murakami, H.: Regular Legendrian knots and the HOMFLY polynomial of immersed plane curves. Math. Ann. 317(3), 389–413 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Earle, C.J., Eells, J.: A fibre bundle description of Teichmüller theory. J. Differ. Geom. 3, 19–43 (1969)

    Article  MATH  Google Scholar 

  17. Earle, C.J., Schatz, A.: Teichmüller theory for surfaces with boundary. J. Differ. Geom. 4, 169–185 (1970)

    Article  MATH  Google Scholar 

  18. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012)

    MATH  Google Scholar 

  19. Gambaudo, J.-M., Ghys, É.: Enlacements asymptotiques. Topology 36(6), 1355–1379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gordon, C.M., Luecke, J.: Knots are determined by their complements. J. Am. Math. Soc. 2(2), 371–415 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gambaudo, J.-M., Lagrange, M.: Topological lower bounds on the distance between area preserving diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.) 31(1), 9–27 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gabrovšek, B., Mroczkowski, M.: Knots in the solid torus up to 6 crossings. J. Knot Theory Ramif. 21(11), 1250106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldsmith, D.L.: Motion of links in the \(3\)-sphere. Math. Scand. 50(2), 167–205 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gramain, A.: Le type d’homotopie du groupe des difféomorphismes d’une surface compacte. Ann. Sci. École Norm. Sup. 4(6), 53–66 (1973)

    Article  MATH  Google Scholar 

  25. Gramain, A.: Sur le groupe fundamental de l’espace des noeuds. Ann. Inst. Fourier (Grenoble) 27(3), 29–44 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hatcher, A.: Homeomorphisms of sufficiently large \(P^2\)-irreducible 3-manifolds. Topology 15(4), 343–347 (1976). See also updated version at http://pi.math.cornell.edu/~hatcher/Papers/emb.pdf

  27. Hatcher, A.: On the diffeomorphism group of \(S^{1}\times S^{2}\). Proc. Am. Math. Soc. 83(2), 427–430 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Hatcher, A.: A proof of the Smale conjecture. Ann. Math. (2) 117(3), 553–607 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hatcher, A.: Spaces of knots. arXiv:math/9909095 (1999)

  30. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  31. Hatcher, A.: Topological moduli spaces of knots. http://pi.math.cornell.edu/~hatcher/Papers/knotspaces.pdf (2002)

  32. Hatcher, A.: Notes on basic 3-manifold topology. http://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf (2007)

  33. Hatcher, A.: Diffeomorphism groups of reducible 3-manifolds. http://pi.math.cornell.edu/~hatcher/Papers/DR3M.pdf (2008)

  34. Hirsch, M.: Differential Topology. Springer-Verlag, Berlin (1976)

    Book  MATH  Google Scholar 

  35. Hendriks, H., Laudenbach, F.: Difféomorphismes des sommes connexes en dimension trois. Topology 23(4), 423–443 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hendriks, H., McCullough, D.: On the diffeomorphism group of a reducible \(3\)-manifold. Topol. Appl. 26(1), 25–31 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hatcher, A., McCullough, D.: Finiteness of classifying spaces of relative diffeomorphism groups of \(3\)-manifolds. Geom. Topol. 1, 91–109 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ivanov, N.V.: Groups of diffeomorphisms of Waldhausen manifolds. Studies in topology, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66, 172–176 (1976)

    MathSciNet  MATH  Google Scholar 

  39. Ivanov, N.V.: Homotopies of automorphism spaces of some three-dimensional manifolds. Dokl. Akad. Nauk SSSR 244(2), 274–277 (1979)

    MathSciNet  Google Scholar 

  40. Johannson, K.: Homotopy Equivalences of 3-Manifolds with Boundaries. Lecture Notes in Mathematics, vol. 761. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  41. Jaco, W., Shalen, P. B.: A new decomposition theorem for irreducible sufficiently-large 3-manifolds. In: Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, pp. 71–84. American Mathematical Society, Providence, RI (1978)

  42. Jaco, W.H., Shalen, P.B.: Seifert fibered spaces in \(3\)-manifolds. Mem. Am. Math. Soc. 21(220), viii+192 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Kent, A.E., Peifer, D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12(1–2), 85–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lima, E.L.: On the local triviality of the restriction map for embeddings. Comment. Math. Helv. 38, 163–164 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  45. Morgan, J.W., Bass, H. (eds.): The Smith Conjecture, volume 112 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL (1984). Papers presented at the symposium held at Columbia University, New York, 1979

  46. Menasco, W.: Closed incompressible surfaces in alternating knot and link complements. Topology 23(1), 37–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Milnor, J.: Link groups. Ann. Math. 59, 177–195 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  48. Moffatt, H.K.: Helicity and singular structures in fluid dynamics. Proc. Natl. Acad. Sci. USA 111(10), 3663–3670 (2014)

    Article  Google Scholar 

  49. Nariman, S.: On the finiteness of the classifying space of diffeomorphisms of reducible three manifolds. arxiv:2104.12338

  50. Palais, R.S.: Local triviality of the restriction map for embeddings. Comment. Math. Helv. 34, 305–312 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  51. Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pohl, W.F.: The self-linking number of a closed space curve. J. Math. Mech. 17, 975–985 (1967/1968)

  53. Rolfsen, D.: Knots and Links. Mathematics Lecture Series, vol. 7. Publish or Perish, Inc., Houston, TX, Corrected reprint of the 1976 original (1990)

  54. Sakuma, M.: Uniqueness of symmetries of knots. Math. Z. 192(2), 225–242 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schubert, H.: Knoten und Vollringe. Acta Math. 90, 131–286 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  56. Smale, S.: Diffeomorphisms of the \(2\)-sphere. Proc. Am. Math. Soc. 10, 621–626 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  57. Smith, P.A.: Transformations of finite period. II. Ann. Math. 2(40), 690–711 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  58. Swenton, F.: Kirby Calculator/KLO (Knot-Like Objects). http://www.klo-software.net

  59. Thistlethwaite, M.: The Thistlethwaite Link Table. http://katlas.org/wiki/The_Thistlethwaite_Link_Table

  60. Thurston, W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. (N.S.) 6(3), 357–381 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  61. Waldhausen, F.: Gruppen mit Zentrum und \(3\)-dimensionale Mannigfaltigkeiten. Topology 6, 505–517 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  62. Waldhausen, F.: On irreducible \(3\)-manifolds which are sufficiently large. Ann. Math. 2(87), 56–88 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks R. Inanç Baykur for support and encouragement in participating in this project. The second author thanks Ryan Budney for conservations about approaches to this question, Sam Nariman for a conversation about reducible 3-manifolds, and Rafał Komendarczyk for a brief discussion of connections to other problems. Both authors thank Nikolay Buskin and Richard Buckman for bringing to our attention the problem of Arnold, for useful early conversations, and for inspiration to explore various examples. We thank the referee for useful comments which lead to some strengthening of our results. We acknowledge the use of KLO [58] and especially SnapPy [13] for verifying the symmetries of various links, and the use of Inkscape and Grapher for producing graphics. The second author was supported by the Louisiana Board of Regents Support Fund, contract number LEQSF(2019-22)-RD-A-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Koytcheff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havens, A., Koytcheff, R. Spaces of knots in the solid torus, knots in the thickened torus, and links in the 3-sphere. Geom Dedicata 214, 671–737 (2021). https://doi.org/10.1007/s10711-021-00633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-021-00633-y

Keywords

2020 Mathematics Subject Classification

Navigation