Skip to main content
Log in

Hierarchically hyperbolic groups are determined by their Morse boundaries

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We generalize a result of Paulin on the Gromov boundary of hyperbolic groups to the Morse boundary of top-heavy hierarchically hyperbolic spaces admitting cocompact group actions by isometries. Namely we show that if the Morse boundaries of two such spaces each contain at least three points, then the spaces are quasi-isometric if and only if there exists a homeomorphism between their Morse boundaries such that the map and its inverse are 2-stable, quasi-möbius. Our result extends a recent result of Charney–Murray, who prove such a classification for CAT(0) groups, and is new for mapping class groups and the fundamental groups of 3-manifolds without Nil or Sol components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. After the release of a preprint of this paper, Charney et al. [10] showed that all finitely generated groups have the small cross-ratio property, thus extending our Main Theorems to all finitely generated groups.

References

  1. Abbott, C., Behrstock, J., Durham, M.G.: Largest acylindrical action and stability in hierarchically hyperbolic groups (2017). arXiv:1509.00632v2

  2. Behrstock, J., Hagen, M.F., Sisto, A.: Hierarchically hyperbolic spaces II: Combination theorems and the distance formula (2015). arXiv:1509.00632v2

  3. Behrstock, J., Hagen, M.F., Sisto, A.: Hierarchically hyperbolic spaces, I: curve complexes for cubical groups. Geom. Topol. 21(3), 1731–1804 (2017). https://doi.org/10.2140/gt.2017.21.1731

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrstock, J., Kleiner, B., Minsky, Y., Mosher, L.: Geometry and rigidity of mapping class groups. Geom. Topol. 16(2), 781–888 (2012). https://doi.org/10.2140/gt.2012.16.781

    Article  MathSciNet  MATH  Google Scholar 

  5. Behrstock, J.A.: Asymptotic geometry of the mapping class group and Teichmüller space. Geom. Topol. 10, 1523–1578 (2006). https://doi.org/10.2140/gt.2006.10.1523

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourdon, M.: Immeubles hyperboliques, dimension conforme et rigidité de Mostow. Geom. Funct. Anal. 7(2), 245–268 (1997). https://doi.org/10.1007/PL00001619

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourdon, M., Pajot, H.: Quasi-conformal geometry and hyperbolic geometry. In: Rigidity in Dynamics and Geometry (Cambridge, 2000), pp. 1–17. Springer, Berlin (2002)

  8. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-12494-9

  9. Brock, J.F.: The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. Am. Math. Soc. 16(3), 495–535 (2003). https://doi.org/10.1090/S0894-0347-03-00424-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Charney, R., Cordes, M., Murray, D.: Quasi-möbius homeomorphisms of Morse boundaries. arXiv:1801.05315 (2018)

  11. Charney, R., Murray, D.: A rank-one CAT(0) group is determined by its Morse boundary (2017). arXiv:1707.07028v1

  12. Charney, R., Sultan, H.: Contracting boundaries of \(\rm CAT(0)\) spaces. J. Topol. 8(1), 93–117 (2015). https://doi.org/10.1112/jtopol/jtu017

    Article  MathSciNet  MATH  Google Scholar 

  13. Cordes, M.: Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn. 11(4), 1281–1306 (2017). https://doi.org/10.4171/GGD/429

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordes, M.: A survey on Morse boundaries & stability (2017). arXiv:1704.07598v1

  15. Durham, M.G.: The augmented marking complex of a surface. J. Lond. Math. Soc. 94(3), 933 (2016). https://doi.org/10.1112/jlms/jdw065

    Article  MathSciNet  MATH  Google Scholar 

  16. Eskin, A., Masur, H., Rafi, K.: Large-scale rank of Teichmüller space. Duke Math. J. 166(8), 1517–1572 (2017). https://doi.org/10.1215/00127094-0000006X

    Article  MathSciNet  MATH  Google Scholar 

  17. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/978-1-4613-9586-7_3

  18. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993)

  19. Hagen, M.F., Susse, T.: On hierarchical hyperbolicity of cubical groups (2016). arXiv:1609.01313v2

  20. Kapovich, I., Benakli, N.: Boundaries of hyperbolic groups. In: Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemporary Mathematics, vol. 296, pp. 39–93. American Mathematical Society, Providence, RI (2002). https://doi.org/10.1090/conm/296/05068

  21. Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1), 103–149 (1999). https://doi.org/10.1007/s002220050343

    Article  MathSciNet  MATH  Google Scholar 

  22. Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4), 902–974 (2000). https://doi.org/10.1007/PL00001643

    Article  MathSciNet  MATH  Google Scholar 

  23. Pansu, P.: Dimension conforme et sphère à l’infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Ser. A I Math. 14(2), 177–212 (1989). https://doi.org/10.5186/aasfm.1989.1424

    Article  MathSciNet  MATH  Google Scholar 

  24. Paulin, F.: Un groupe hyperbolique est déterminé par son bord. J. Lond. Math. Soc. (2) 54(1), 50–74 (1996). https://doi.org/10.1112/jlms/54.1.50

    Article  MATH  Google Scholar 

  25. Rafi, K.: A combinatorial model for the Teichmüller metric. Geom. Funct. Anal. 17(3), 936–959 (2007). https://doi.org/10.1007/s00039-007-0615-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Sisto, A.: What is a hierarchically hyperbolic space? (2017). arXiv:1707.00053

  27. Vokes, K.M.: Hierarchical hyperbolicity of the separating curve graph (2017). arXiv:1711.03080

Download references

Acknowledgements

The authors would like to thank Devin Murray, Ruth Charney, and Matthew Cordes for helpful conversation about the Morse boundary and Mark Hagen for his assistance with hierarchically hyperbolic spaces. The authors are also very grateful for the support and guidance of their advisors, Chris Leininger and Jason Behrstock. The second author would like to thank Chris Leininger for his mentorship and hospitality during a visit funded by NSF Grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and Representation Varieties” (the GEAR Network), where the work on this project began.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Mousley.

Additional information

Second author was supported by NSF Grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and Representation Varieties” (the GEAR Network).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousley, S.C., Russell, J. Hierarchically hyperbolic groups are determined by their Morse boundaries. Geom Dedicata 202, 45–67 (2019). https://doi.org/10.1007/s10711-018-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0402-x

Keywords

Mathematics Subject Classification

Navigation