Skip to main content
Log in

Octahedral developing of knot complement I: Pseudo-hyperbolic structure

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

It is known that a knot complement can be decomposed into ideal octahedra along a knot diagram. A solution to the gluing equations applied to this decomposition gives a pseudo-developing map of the knot complement, which will be called a pseudo-hyperbolic structure. In this paper, we study these in terms of segment and region variables which are motivated by the volume conjecture so that we can compute complex volumes of all the boundary parabolic representations explicitly. We investigate the octahedral developing and holonomy representation carefully, and obtain a concrete formula of Wirtinger generators for the representation and also of cusp shape. We demonstrate explicit solutions for T(2, N) torus knots, J(NM) knots and also for other interesting knots as examples. Using these solutions we can observe the asymptotic behavior of complex volumes and cusp shapes of these knots. We note that this construction works for any knot or link, and reflects systematically both geometric properties of the knot complement and combinatorial aspects of the knot diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. We use the term “segment” instead of “edge” for knot diagrams to avoid the confusion with an edge of a triangulation, see Sect. 3.

  2. If one choose a different \(\mathcal {C}:M\rightarrow M_z\), the developing is not unique as a map. But the simplex-wise image of the developing doesn’t change.

References

  1. Champanerkar, A.: A-polynomial and Bloch invariants of hyperbolic 3-manifolds, Thesis (Ph.D.)–Columbia University, 108 pp (2003)

  2. Cho, J.: Optimistic limits of colored Jones polynomials and complex volumes of hyperbolic links. J. Aust. Math. Soc. 100(3), 303–337 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cho, J.: Optimistic limit of the colored Jones polynomial and the existence of a solution. Proc. Am. Math. Soc. 144(4), 1803–1814 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cho, J.: Erratum: Connected sum of representations of knot groups. J. Knot Theory Ramif. 25(5), 1692001, 2 (2016)

    Article  Google Scholar 

  5. Cho, J., Kim, H., Kim, S.: Optimistic limits of Kashaev invariants and complex volumes of hyperbolic links. J. Knot Theory Ramif. 23(9), 1450049,32 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cho, J., Murakami, J.: Optimistic limits of the colored Jones polynomials. J. Korean Math. Soc. 50(3), 641–693 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cho, J., Murakami, J.: Reidemeister transformations of the potential function and the solution. J. Knot Theory Ramif. 26(12), 1750079, 36 (2017)

    Article  MathSciNet  Google Scholar 

  8. Falbel, E., Garoufalidis, S., Guilloux, A., Görner, M., Koseleff, P.-V., Rouillier, F., Zickert, C.: “CURVE”, electronic reference (2015). Available at http://curve.unhyperbolic.org

  9. Cho, J., Zickert, C.K.: Personal communication at Postech in Korea on September 2015

  10. Dunfield, N.M.: Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds. Invent. Math. 136(3), 623–657 (1999)

    Article  MathSciNet  Google Scholar 

  11. Francaviglia, S.: Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. Int. Math. Res. Not. 2004(9), 425–459 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hikami, K., Inoue, R.: Braids, complex volume and cluster algebras. Algebr. Geom. Topol. 15(4), 2175–2194 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hodgson, C.D., Rubinstein, J.H., Segerman, H., Tillmann, S.: Triangulations of 3-manifolds with essential edges. Ann. Fac. Sci. Toulouse Math. (6) 24(5), 1103–1145 (2015)

    Article  MathSciNet  Google Scholar 

  14. Inoue, A., Kabaya, Y.: Quandle homology and comple volume. Geom. Dedic. 171(1), 265–292 (2014)

    Article  Google Scholar 

  15. Kashaev, R.M.: Quantum dilogarithm as a 6j-symbol. Modern Phys. Lett. A 9(40), 3757–3768 (1994)

    Article  MathSciNet  Google Scholar 

  16. Kashaev, R.M.: A link invariant from quantum dilogarithm. Modern Phys. Lett. A 10(19), 1409–1418 (1995)

    Article  MathSciNet  Google Scholar 

  17. Kim, S., Park, I.: Octahedral developing of knot complement III: Simplicial polyhedralization and solution variety (in preperation)

  18. Kim, H., Kim, S., Yoon, S.: Octahedral developing of knot complement II: Ptolemy coordinates and applications (in preperation)

  19. Luo, F.: Volume optimization, normal surfaces, and Thurston’s equation on triangulated 3-manifolds. J. Differ. Geom. 93(2), 299–326 (2013)

    Article  MathSciNet  Google Scholar 

  20. Luo, F., Tillmann, S., Yang, T.: Thurston’s spinning construction and solutions to the hyperbolic gluing equations for closed hyperbolic 3-manifolds. Proc. Am. Math. Soc. 141(1), 335–350 (2013)

    Article  MathSciNet  Google Scholar 

  21. Murakami, H.: Kashaev’s invariant and the volume of a hyperbolic knot after Y. Yokota, Physics and combinatorics 1999 (Nagoya, 1999). World Sci. Publ. 2001, 244–272 (1999)

    Google Scholar 

  22. Murakami, H.: An introduction to the volume conjecture, Interactions between hyperbolic geometry, quantum topology and number theory. Contemp. Math. 541, 1–40 (2011)

    Article  Google Scholar 

  23. Meyerhoff, R., Ouyang, M.: The \(\eta \)-invariants of cusped hyperbolic \(3\)-manifolds. Canad. Math. Bull. 40(2), 204–213 (1997)

    Article  MathSciNet  Google Scholar 

  24. Neumann, W.D., Tsvietkova, A.: Intercusp geodesics and the invariant trace field of hyperbolic 3-manifolds. Proc. Am. Math. Soc. 144(2), 887–896 (2016)

    Article  MathSciNet  Google Scholar 

  25. Neumann, W.D.: Extended Bloch group and the Cheeger–Chern–Simons class. Geom. Topol. 8, 413–474 (2004)

    Article  MathSciNet  Google Scholar 

  26. Neumann, W.D., Yang, J.: Bloch invariants of hyperbolic 3-manifolds. Duke Math. J. 96(1), 29–59 (1999)

    Article  MathSciNet  Google Scholar 

  27. Neumann, W.D., Zagier, D.: Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985)

    Article  MathSciNet  Google Scholar 

  28. Ohtsuki, T., Takata, T.: On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots. Geom. Topol. 19(2), 853–952 (2015)

    Article  MathSciNet  Google Scholar 

  29. Riley, R.: Parabolic representations of knot groups. I. Proc. Lond. Math. Soc. 24(2), 217–242 (1972)

    Article  MathSciNet  Google Scholar 

  30. Riley, R.: A personal account of the discovery of hyperbolic structures on some knot complements. Expos. Math. 31(2), 104–115 (2013)

    Article  MathSciNet  Google Scholar 

  31. Segerman, H., Tillmann, S.: Pseudo-developing maps for ideal triangulations I: essential edges and generalised hyperbolic gluing equations. Topology and geometry in dimension three: triangulations, invariants, and geometric structures (Oklahoma, 2010). Contemp. Math. 560(2011), 85–102 (2010)

    MATH  Google Scholar 

  32. Thurston, D.: Hyperbolic volume and the Jones polynomial, handwritten note (Grenoble Summer School, 1999), p 21

  33. Thistlethwaite, M., Tsvietkova, A.: An alternative approach to hyperbolic structures on link complements. Algebr. Geom. Topol. 14(3), 1307–1337 (2014)

    Article  MathSciNet  Google Scholar 

  34. Thurston, W.P.: The Geometry and Topology of 3-Manifolds. Princeton (Lecture notes) (1977)

  35. Tsvietkova, A.: Hyperbolic Structures from Link Diagrams, Thesis (Ph.D.) The University of Tennessee, p 77 (2012)

  36. Weeks, J.R.: Computation of Hyperbolic Structures in Knot Theory. Handbook of knot theory, pp. 461–480. Elsevier BV, New York (2005)

    MATH  Google Scholar 

  37. Yoshida, T.: On ideal points of deformation curves of hyperbolic 3-manifolds with one cusp. Topology 30(2), 155–170 (1991)

    Article  MathSciNet  Google Scholar 

  38. Yokota, Y.: On the potential functions for the hyperbolic structures of a knot complement, Invariants of knots and 3-manifolds (Kyoto, 2001). Geom. Topol. Monogr. 4(2002), 303–311 (2001)

    Google Scholar 

  39. Yokota, Y.: On the complex volume of hyperbolic knots. J. Knot Theory Ramif. 20(7), 955–976 (2011)

    Article  MathSciNet  Google Scholar 

  40. Zickert, C.K.: The volume and Chern–Simons invariant of a representation. Duke Math. J. 150(3), 489–532 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We should thank our colleague Insung Park who assisted us in improving the theory. We are also grateful to C. Zickert for email discussions, in particular, about \({\text {PSL }}(2,\mathbb {C})\)-representations and solutions to the gluing equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonhwa Kim.

Additional information

Hyuk Kim was supported by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2015R1D1A1A01057299).

Seonhwa Kim was supported by IBS-R003-D1.

Seokbeom Yoon was supported by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2013H1A2A1033354).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, S. & Yoon, S. Octahedral developing of knot complement I: Pseudo-hyperbolic structure. Geom Dedicata 197, 123–172 (2018). https://doi.org/10.1007/s10711-018-0323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0323-8

Keywords

Mathematics Subject Classification (2010)

Navigation