Skip to main content
Log in

Theorems of Barth-Lefschetz type and Morse theory on the space of paths in homogeneous spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Homotopy connectedness theorems for complex submanifolds of homogeneous spaces (sometimes referred to as theorems of Barth-Lefshetz type) have been established by a number of authors. Morse theory on the space of paths lead to an elegant proof of homotopy connectedness theorems for complex submanifolds of Hermitian symmetric spaces. In this work we extend this proof to a larger class of compact complex homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefschetz, S.: L’ Analysis Situs et la Geometrie Algebrique. Paris (1924)

  2. Barth, W.: Transplanting cohomology classes in complex projective space. Am. J. Math. 92, 951–967 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Larsen, M.: On the topology of complex projective manifolds. Invent. Math. 19, 251–260 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barth, W., Larsen, M.: On the homotopy groups of complex projective manifolds. Math. Scand. 30, 88–94 (1972)

    MATH  MathSciNet  Google Scholar 

  5. Sommese, A.: Theorems of Barth-Lefschetz type for complex subspaces of homogeneous complex manifolds. Proc. Natl. Acad. Sci. USA 74, 1332–1333 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sommese, A.: Complex subspaces of homogeneous complex manifolds II–Homotopy Results. Nagoya Math. J. 86, 101–129 (1982)

    MATH  MathSciNet  Google Scholar 

  7. Goldstein, N.: Ampleness and connectedness in complex G/P. Trans. AMS 274, 361–373 (1982)

    MATH  Google Scholar 

  8. Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry. Algebraic geometry, Springer lecture notes in math. 862, 26–92 (1981)

    MathSciNet  Google Scholar 

  9. Sommese, A., Van de Ven, A.: Homotopy groups of pullbacks of varieties. Nagoya Math. J. 102, 79–90 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Frankel, T.: Manifolds with positive curvature. Pac. J. Math. 11, 165–174 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schoen, R., Wolfson, J.: Theorems of Barth-Lefschetz type and Morse theory on the space of paths. Math. Z. 229, 77–87 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, M., Wolfson, J.: Theorems of Barth-Lefschetz type on Kähler manifolds of non-negative bisectional curvature. Forum. Math. 152, 61–273 (2003)

    MathSciNet  Google Scholar 

  13. Onishchik, A.L.: Topology of transitive transformation groups. Johann Ambrosius Barth, Leipzig (1994)

    MATH  Google Scholar 

  14. Ni, L., Wolfson, J.: The Lefschetz theorem for CR submanifolds and the nonexistence of real analytic Levi at submanifolds. Commun. Anal. Geom. 11, 553–564 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wilking, B.: Torus actions on manifolds of positive sectional curvature. Acta Math. 191, 259–297 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, X.: Theorems of Barth-Lefschetz type in Sasakian geometry. arXiv:math.DG/1110.0565v1

  17. Fang, F., Mendonca, S.: Complex immersions in Kähler manifolds of positive holomorphic k-Ricci curvature. Trans. Amer. Math. Soc. 357(9), 3725–3738 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang, F.: Positive quaternionic Kähler manifold and symmetry rank. Crelles J. 576, 149–165 (2004)

    MATH  Google Scholar 

  19. Fang, F., Mendonca, S., Rong, X.: A connectedness principle in the geometry of positive curvature. Comm. Anal. Geom. 13, 671–695 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mok, N.: Uniqueness theorems of Kähler metrics of semipositive bisectional curvature on compact Hermitian symmetric spaces. Math. Ann. 276, 177–204 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Milnor, J.: Morse theory, annals of mathematics studies 51. Princeton University Press, Princeton (1963)

    Google Scholar 

  22. Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76(1), 33–65 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II. Wiley, New York (1969)

    MATH  Google Scholar 

  24. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic Press, New-York (1978)

    MATH  Google Scholar 

  25. Wang, H.C.: Closed manifolds with a homogeneous complex structure. Am. J. Math. 76, 1–32 (1954)

    Article  MATH  Google Scholar 

  26. Humphries, J.: Introduction to Lie algebras and representation theory. Springer, Heidelberg (1972)

    Book  Google Scholar 

Download references

Acknowledgments

This work is based on the my’s Ph.D. Thesis at Michigan State University. I wish to thank Michigan State University for the support provided during the pursuit of my doctarate. I would like to thank my Advisor Prof Jon Wolfson for suggesting I investigate this topic and for the many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya Senapathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapathi, C. Theorems of Barth-Lefschetz type and Morse theory on the space of paths in homogeneous spaces. Geom Dedicata 178, 195–217 (2015). https://doi.org/10.1007/s10711-015-0053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0053-0

Keywords

Mathematics Subject Classification

Navigation