Skip to main content
Log in

Conservation and genetic characterisation of common bean landraces from Cilento region (southern Italy): high differentiation in spite of low genetic diversity

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Since its introduction from Central-South America to Italy almost 500 years ago, the common bean (Phaseolus vulgaris L.) was largely cultivated across the peninsula in hundreds of different landraces. However, globalisation and technological modernisation of agricultural practices in the last decades promoted the cultivation of few varieties at the expense of traditional and local agro-ecotypes, which have been confined to local markets or have completely disappeared. The aim of this study was to evaluate the genetic diversity and differentiation in 12 common bean landraces once largely cultivated in the Cilento region (Campania region, southern Italy), and now the object of a recovery program to save them from extinction. The analysis conducted using 13 nuclear microsatellite loci in 140 individuals revealed a high degree of homozygosity within each landrace and a strong genetic differentiation that was reflected in the success in assigning individuals to the source landrace. On the contrary, internal transcribed spacers 1 and 2, analysed in one individual per landrace, were highly similar among common bean landraces but allowed the identification of a cowpea variety (Vigna unguiculata Walp.), a crop largely cultivated in the Old World before the arrival of common bean from Americas. In conclusion, our study highlighted that conservation of landraces is important not only for the cultural and socio-economic value that they have for local communities, but also because the time and conditions in which they have been selected have led to that genetic distinctiveness that is at the basis of many potential agronomical applications and dietary benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol Phyl Evol 13:67–76

    Article  CAS  Google Scholar 

  • Alberto F (2006) StandArich_v1.00: an R package to estimate population allelic richness using standardized sample size. http://www.ccmar.ualg.pt/maree/software.php?soft=sarich. Accessed 24 Aug 2016

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Altieri MA, Merrick L (1987) In situ conservation of crop genetic resources through maintenance of traditional farming systems. Econ Bot 41:86–96

    Article  Google Scholar 

  • Altieri MA, Anderson M, Merrick LC (1987) Peasant agriculture and the conservation of crop and wild plant resources. Conserv Biol 1:49–58

    Article  Google Scholar 

  • Angioi SA, Rau D, Rodriguez M, Logozzo G, Desiderio F, Papa R, Attene G (2009) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429

    Article  CAS  Google Scholar 

  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L.. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  CAS  PubMed  Google Scholar 

  • Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Barro-Kondombo C, Sagnard F, Chantereau J, Deu M, Vom Brocke K, Durand P, Gozé E, Zongo JD (2010) Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theor Appl Genet 120:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows™ pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). http://kimura.univ-montp2.fr/genetix/

  • Bellon MR, Gotor E, Caracciolo F (2015) Conserving landraces and improving livelihoods: how to assess the success of on-farm conservation projects? Int J Agr Sustain 13:167–182

    Article  Google Scholar 

  • Bradshaw JE (2016) Genetic structure of landraces. In: Plant breeding: past, present and future. Springer, Cham, pp 273–290

    Chapter  Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetics structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field. On-farm conservation of crop diversity. Lewis Publishers, Boca Raton, pp 29–48

    Google Scholar 

  • Brunner BR, Beaver JS (1989) Estimation of outcrossing of common bean in Puerto Rico. Hortscience 24:669–671

    Google Scholar 

  • Burkhill IH (1953) Habits of man and the origins of the cultivated plants of the Old World. J Proc Linn Soc Lond (Bot) 164:12–42

    Article  Google Scholar 

  • Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  • Cennamo P, Di Novella R, Menale B (2002) Analisi della variabilità genetica in due popolazioni delle specie relitte Abies alba Miller (Pinaceae) e Betula pendula Roth (Betulaceae) del Parco Nazionale del Cilento e Vallo di Diano. Delpinoa 44:95–101

    Google Scholar 

  • Cicia G, Scarpa R (2004) Ha senso l’attività agricola per la sola “produzione” del paesaggio rurale? Alcune riflessioni sul parco nazionale del Cilento. Boll Dip Conserv Beni Arch Ambient 5:55–66

    Google Scholar 

  • Comes O (1910) Del fagiolo comune: storia, filogenesi, qualità sospettata tossicità e sistemazione delle sue razze ovunque coltivate. Atti Ist Incoragg Napoli 61:75–145

    Google Scholar 

  • Conti F, Bonacquisti S, Abbate G (2005) An annotated checklist of the Italian vascular flora. Palombi, Rome

    Google Scholar 

  • Coppola A, Verneau F (1997) Tipologie aziendali e percorsi evolutivi in un’area della collina meridionale. La Quest Agraria 68:135–162

    Google Scholar 

  • Corbetta F, Frattaroli AR, Ciaschetti G, Pirone G (2000) Some aspects of the chasmophytic vegetation in the Cilento-Vallo di Diano National Park (Campania, Italy). Acta Bot Croat 59:43–53

    Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    Article  CAS  PubMed  Google Scholar 

  • De Jong W (1997) Developing swidden agriculture and the threat of biodiversity loss. Agric Ecosyst Environ 62:187–197

    Article  Google Scholar 

  • De Luca D, Menale B, Caputo P, Cennamo P (2017) Population genetics analysis in a relic population of silver fir (Abies alba Mill.) in southern Italy: a comparison with microsatellites and reference data. Plant Biosyst 151:567–573

    Article  Google Scholar 

  • Di Novella R, Di Novella N, De Martino L, Mancini E, De Feo V (2013) Traditional plant use in the national park of Cilento and Vallo Di Diano, Campania, Southern, Italy. J Ethnopharmacol 145:328–342

    Article  PubMed  Google Scholar 

  • Di Vaio C, Nocerino S, Paduano A, Sacchi R (2013) Characterization and evaluation of olive germplasm in southern Italy. J Sci Food Agric 93:2458–2462

    Article  PubMed  CAS  Google Scholar 

  • Di Gristina E, Gottschlich G, Raimondo FM (2016) Hieracium hypochoeroides subsp. cilentanum (Asteraceae), a new taxon from S Italy. Phytotaxa 246:192–197

    Article  Google Scholar 

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    Article  PubMed  Google Scholar 

  • Diaz-Batalla L, Widholm JM, Fahey GC, Castaño-Tostado E, Paredes-Lopez O (2006) Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J Agric Food Chem 54:2045–2052

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • FAO (1999) Women: users, preservers and managers of agrobiodiversity. http://www.fao.org/docrep/007/y5609e/y5609e02.htm. Accessed 25 June 2017

  • FAO (2015) FAO Statistical Pocketbook. World Food and Agriculture. FAO Publishing. http://www.fao.org/3/a-i4691e.pdf. Accessed 25 June 2017

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Finegan B, Nasi R (2004) The biodiversity and conservation potential of shifting cultivation landscapes. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 153–197

    Google Scholar 

  • Fischer MC, Foll M, Excoffier L, Heckel G (2011) Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Mol Ecol 20:1450–1462. doi: 10.1111/j.1365-294x.2011.05015.x

    Article  PubMed  Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris). Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Galderisi U, Cipollaro M, Di Bernardo G, De Masi L, Galano G, Cascino A (1999) Identification of the edible fig “Bianco del Cilento” by random amplified polymorphic DNA analysis. Hortscience 34:1263–1265

    CAS  Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654

    Article  Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852. doi:10.1111/j.1365-294X.2010.04784.x

    Article  PubMed  Google Scholar 

  • Gurusamy V, Bett KE, Vandenberg A (2010) Grafting as a tool in common bean breeding. Can J Plant Sci 90:299–304

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  • Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22:8–15

    Article  PubMed  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2012) The ex situ conservation of plant genetic resources. Springer, The Netherlands

    Google Scholar 

  • Ibarra-Pérez F, Ehdaie B, Waines G (1997) Estimation of outcrossing rate in common bean. Crop Sci 37:60–65

    Article  Google Scholar 

  • Johns T, Powell B, Maundu P, Eyzaguirre PB (2013) Agricultural biodiversity as a link between traditional food systems and contemporary development, social integrity and ecological health. J Sci Food Agric 93:3433–3442

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  • Jost LOU (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Keys A, Keys M (1967) The benevolent bean. Doubleday, New York

    Google Scholar 

  • Lakis G, Ousmane AM, Sanoussi D, Habibou A, Badamassi M, Lamy F, Jika N, Sidikou R, Adam T, Sarr A, Luxereau A, Robert T (2011) Evolutionary dynamics of cycle length in pearl millet: the role of farmer’s practices and gene flow. Genetica 139:1367–1380

    Article  PubMed  Google Scholar 

  • Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621

    Article  CAS  PubMed  Google Scholar 

  • Lioi L, Piergiovanni AR (2013) European common bean. In: Singh M, Upadhyaya HD, Bisht S (eds) Genetic and genomic resources of grain legume improvement. Elsevier, Oxford, pp 11–40

    Chapter  Google Scholar 

  • Lioi L, Nuzzi A, Campion B, Piergiovanni AR (2012) Assessment of genetic variation in common bean (Phaseolus vulgaris L.) from Nebrodi mountains (Sicily, Italy). Genet Resour Crop Evol 59:455–464

    Article  CAS  Google Scholar 

  • Lischer HEL, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JA (1999) Agriculture and biodiversity: finding our place in this world. Agr Hum Values 16:365–379

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • Mattioli PA (1568) I discorsi di M. Pietro Andrea Matthioli … nelli sei libri di Pedacio Dioscoride Anazarbeo della materia medicinale … Appresso Vincenzo Valgrisi. (In Venetia)

  • Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669

    Article  PubMed  Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Mercati F, Leone M, Lupini A, Sorgonà A, Bacchi M, Abenavoli MR, Sunseri F (2013) Genetic diversity and population structure of a common bean (Phaseolus vulgaris L.) collection from Calabria (Italy). Genet Resour Crop Evol 60:839–852

    Article  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellite are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Moro E (2014) La dieta mediterranea. Mito e storia di uno stile di vita. Il Mulino, Bologna

    Google Scholar 

  • Moro E (2016) The mediterranean diet from ancel keys to the UNESCO cultural heritage. A pattern of sustainable development between myth and reality. Procedia Soc Behav Sci 223:655–661

    Article  Google Scholar 

  • Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Resour Crop Evol 50:871–885

    Article  Google Scholar 

  • Negri V, Tiranti B (2010) Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us. Genetica 138:985–998

    Article  PubMed  Google Scholar 

  • Negri V, Tosti N, Falcinelli M, Veronesi F (2000) Characterisation of thirteen cowpea landraces from Umbria (Italy). Strategy for their conservation and promotion. Genet Resour Crop Evol 47:141–146

    Article  Google Scholar 

  • Negri V, Maxted N, Vetelainen M (2009) European landrace conservation: an introduction. In: Vetelainen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Rome, Italy, pp 1–22

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolè S, Erickson DL, Ambrosi D, Bellucci E, Lucchin M, Papa R, Kress WJ, Barcaccia G (2011) Biodiversity studies in Phaseolus species by DNA barcoding. Genome 54:529–545

    Article  PubMed  Google Scholar 

  • Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conserv Lett 1:2–11

    Article  Google Scholar 

  • Oldfield ML, Alcorn JB (1987) Conservation of traditional agroecosystems. Bioscience 37:199–208

    Article  Google Scholar 

  • Ombra MN, d’Acierno A, Nazzaro F, Riccardi R, Spigno P, Zaccardelli M, Pane C, Maione M, Fratianni F (2016) Phenolic composition, antioxidant and anti-proliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of Southern Italy, before and after cooking. Oxid Med Cell Longev. 10.1155/2016/1398298

    PubMed  PubMed Central  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–63

    Article  CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrillo PL (2012) Biocultural diversity and the Mediterranean Diet. In: Burlingame B, Dernini S (ed) Sustainable diets and biodiversity directions and solutions for policy, research and action. Proceedings of the international scientific symposium biodiversity and sustainable diets united against hunger, 3–5 November 2010. FAO, Rome, pp 224–229

  • Piergiovanni AR, Lioi L (2010) Italian common bean landraces: history, genetic diversity and seed quality. Diversity 2:837–862

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pistorius R (1997) Plant and politics. A history of the plant genetic resources movement. IPGRI, Rome

    Google Scholar 

  • Polegri L, Negri V (2010) Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet Resour Crop Evol 57:867–880

    Article  CAS  Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (1982) The case for in situ conservation of crop genetic resources. Nat Resour 231:5–20

    Google Scholar 

  • Purseglove JW (1976) The origins and migrations of crops in tropical Africa. In: Harlan JR, de Wet JM, Stemler ABL (eds) Origins of African plant domestication. The Hague, Mouton, pp 291–310

    Google Scholar 

  • Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci USA 106:13880–13885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Salerno G, Guarrera PM (2008) Ricerche etnobotaniche nel Parco Nazionale del Cilento e Vallo di Diano: il territorio di Castel San Lorenzo (Campania, Salerno). Inf Bot Ital 40:165–181

    Google Scholar 

  • Santangelo N, Santo A, Guida D, Lanzara R, Siervo V (2005) The geosites of the Cilento-Vallo di Diano National Park (Campania region, southern Italy). Ital J Quat Sci 18:101–112

    Google Scholar 

  • Scarano D, Rubio F, Ruiz JJ, Rao R, Corrado G (2014) Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Sci Hortic 180:72–78

    Article  Google Scholar 

  • Scherrer AM, Motti R, Weckerle CS (2005) Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy). J Ethnopharmacol 97:129–143

    Article  PubMed  Google Scholar 

  • Servín-Garcidueñas LE, Zayas-Del Moral A, Ormeño-Orrillo E, Rogel MA, Delgado-Salinas A, Sánchez F, Martínez-Romero E (2014) Symbiont shift towards Rhizobium nodulation in a group of phylogenetically related Phaseolus species. Mol Phyl Evol 79:1–11

    Article  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Srivastava J, Smith NJ (1996) Biodiversity and agriculture: implications for conservation and development. World Bank Publications, Washington

    Book  Google Scholar 

  • Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Resour 3:329–331

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson T, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinf 2.3:2.3.1–2.3.22

    Google Scholar 

  • Thrupp LA (2000) Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. Int Aff 76:283–297

    Article  Google Scholar 

  • Tiranti B, Negri V (2007) Selective microenvironmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L. landrace: implications for on-farm conservation. Mol Ecol 16:4942–4955

    Article  CAS  PubMed  Google Scholar 

  • Triana B, Iwanaga M, Rubiano H, Andrade M (1993) A study of allogamy in wild Phaseolus vulgaris. Annu Rep Bean Improv Coop 36:21–21

    Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vargas-Ponce O, Zizumbo-Villarreal D, Martínez-Castillo J, Coello-Coello J, Colunga-GarcíaMarín P (2009) Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. Am J Bot 96:448–457

    Article  PubMed  Google Scholar 

  • Volis S, Blecher M (2010) Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodivers Conserv 19:2441–2454

    Article  Google Scholar 

  • Wang C, Schroeder KB, Rosenberg NA (2012) A maximum-likelihood method to correct for allelic dropout in microsatellite data with no replicate genotypes. Genetics 192:651–669. doi:10.1534/genetics.112.139519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA)n-(dGdT)n polymorphisms. Genomics 7:524–530

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J org Evol 38:1358–1370

    CAS  Google Scholar 

  • Wilcove DS, Koh LP (2010) Addressing the threats to biodiversity from oil-palm agriculture. Biodivers Conserv 19:999–1007

    Article  Google Scholar 

  • Wilson EO (1989) Threats to biodiversity. Sci Am 261:108–116

    Article  Google Scholar 

  • Wood D, Lenne JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zhang H, Sun J, Wang M, Liao D, Zeng Y, Shen S, Yu P, Mu P, Wang X, Li Z (2006) Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Genome 50:72–83

    Article  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-GarcíaMarín P, de la Cruz EP, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Luca Paino for his contribution to DNA extraction and the two anonymous reviewers for the useful suggestions that improved the quality of the manuscript. This study was funded by the project “Risorse genetiche autoctone e agroecosistema: le cultivar dei fagioli della Campania meridionale” (Legge Regionale N.5 del 28/03/2002) to Paolo Caputo. Daniele De Luca was supported by a scholarship within the same project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele De Luca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, D., Cennamo, P., Del Guacchio, E. et al. Conservation and genetic characterisation of common bean landraces from Cilento region (southern Italy): high differentiation in spite of low genetic diversity. Genetica 146, 29–44 (2018). https://doi.org/10.1007/s10709-017-9994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9994-6

Keywords

Navigation