Skip to main content
Log in

Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman SL, Raikow RJ (1982) The hindlimb musculature of the mousebirds (Coliiformes). Auk 99:41–57

    Article  Google Scholar 

  • Bi XX, Huang L, Jing MD, Zhang L, Feng PY, Wang AY (2012) The complete mitochondrial genome sequence of the black-capped capuchin (Cebus apella). Genet Mol Biol 35:545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL (2004) Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura. BMC Genom 5:67

    Article  Google Scholar 

  • Braband A, Cameron SL, Podsiadlowski L, Daniels SR, Mayer G (2010) The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. Mol Phylogenet Evol 57:285–292

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisà E (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511

    Article  CAS  PubMed  Google Scholar 

  • Burton PJK (1984) Anatomy and evolution of the feeding apparatus in the avian orders Coraciiformes and Piciformes. Bull Br Mus 47:331–443

    Google Scholar 

  • Cameron SL, Beckenbach AT, Dowton MA, Whiting MF (2006) Evidence from mitochondrial genomics on interordinal relationships in insects. Arthropod Syst Phyl 64:27–34

    Google Scholar 

  • Campbell V, Lapointe FJ (2011) Retrieving a mitogenomic mammal tree using composite taxa. Mol Phylogenet Evol 58:149–156

    Article  PubMed  Google Scholar 

  • Cerasale DJ, Dor R, Winkler DW, Lovette IJ (2012) Phylogeny of the Tachycineta genus of New World swallows: insights from complete mitochondrial genomes. Mol Phylogenet Evol 63:64–71

    Article  PubMed  Google Scholar 

  • Chen W, Sun Z, Liu Y, Yue B, Liu S (2012) The complete mitochondrial genome of the large white-bellied rat, Niviventer excelsior (Rodentia: Muridae). Mitochondr DNA 23:363–365

    Article  CAS  Google Scholar 

  • Chubb AL (2004) New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK (i). Mol Phylogenet Evol 30:140–151

    Article  CAS  PubMed  Google Scholar 

  • Cracraft J (1981) Toward a phylogenetic classification of the recent birds of the world (Class Aves). AUK 98:681–714

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Xu J, Wang B, Feng J, Jeney Z, Sun X, Xu P (2015) Phylogeny and evolution of multiple common carp (Cyprinus carpio L.) populations clarified by phylogenetic analysis based on complete mitochondrial genomes. Mar Biotechnol 17:565–575

    Article  CAS  PubMed  Google Scholar 

  • Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14:1154–1166

    Article  CAS  PubMed  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa de los Monteros A (2000) Higher-level phylogeny of Trogoniformes. Mol Phylogenet Evol 14:20–34

    Article  CAS  PubMed  Google Scholar 

  • Fenn JD, Song H, Cameron SL, Whiting MF (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol Phylogenet Evol 49:59–68

    Article  CAS  PubMed  Google Scholar 

  • Gadow H (1896) Muscular system. In: Newton A (ed) A dictionary of birds. Adam and Charles Black, London, pp 602–620

    Google Scholar 

  • Gao YK, Miao YW, Su XX, Chi ZF, Yu Y, Jiang F (2009) A comprehensive analysis on 74 avian mitochondrial genome base compositions. J Yunnan Agric Univ 24:51–58

    Google Scholar 

  • Gibson A, Gowri-Shankar V, Higgs PG, Rattray M (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22:251–264

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miqlia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Haring E, Kruckenhauser L, Gamauf A, Riesing MJ, Pinsker W (2001) The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol Biol Evol 18:1892–1904

    Article  CAS  PubMed  Google Scholar 

  • Härlid A, Janke A, Arnason U (1998) The complete mitochondrial genome of Rhea americana and early avian divergences. J Mol Evol 46:669–679

    Article  PubMed  Google Scholar 

  • Höfling E, Alvarenga HMF (2001) Osteology of the shoulder girdle in the Piciformes, Passeriformes and related groups of birds. Zool Anz 240:196–208

    Article  Google Scholar 

  • Huang Z, Ke D (2016) Structure and evolution of the Phasianidae mitochondrial DNA control region. Mitochondr DNA 27:350–354

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Johansson US, Parsons TJ, Irestedt M, Ericson GP (2001) Clades within the ‘higher land birds’, evaluated by nuclear DNA sequences. J Zool Syst Evol Res 39:37–51

    Article  Google Scholar 

  • Kan XZ, Li XF, Zhang LQ, Chen L, Qian CJ, Zhang XW, Wang L (2010) Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae). Genet Mol Res 9:1234–1249

    Article  CAS  PubMed  Google Scholar 

  • Kirchman JJ, Hackett SJ, Goodman SM, Bates JM (2001) Phylogeny and syetematics of ground rollers (Barchypteraciidae) of Madagascar. Auk 118:849–863

    Article  Google Scholar 

  • Leavitt JR, Hiatt KD, Whiting MF, Song H (2013) Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol Phylogenet Evol 67:494–508

    Article  CAS  PubMed  Google Scholar 

  • Luczon AU, Mohammad Isa AHM, Quilang JP, Ong PS, Fontanilla IKC (2010) DNA barcoding of the White-Collared Kingfisher Todirhamphus chloris (Boddaert 1783) (Alcedinidae) using the mitochondrial cytochrome oxidase subunit I gene. Philipp Sci Lett 3:74–77

    Google Scholar 

  • Marks BD, Willard DE (2005) Phylogenetic relationships of the Madagascar pygmy kingfisher (Ispidina madagascariensis). Auk 122:1271–1280

    Article  Google Scholar 

  • Maurer DR, Raikow RJ (1981) Appendicular myology, phylogeny, and classification of the avian order Coraciiformes (including Trogoniformes). Ann Carnegie Mus 50:417–434

    Google Scholar 

  • Mayr G (1998) “Coraciiforme” und “piciforme” Kleinvögel aus dem Mittel-Eozän der Grube Messel (Hessen, Deutschland). Cour Forsch Senckenb 205:1–101

    Google Scholar 

  • Mindell DP, Sorenson MD, Dimcheff DE (1998) An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol 15:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondrial. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology, 8th edn. Academic Press, New York, pp 79–252

    Chapter  Google Scholar 

  • Overton LC, Rhoads DD (2004) Molecular phylogenetic relationships based on mitochondrial and nuclear gene sequences for the Todies (Todus, Todidae) of the Caribbean. Mol Phylogenet Evol 32:524–538

    Article  CAS  PubMed  Google Scholar 

  • Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA (2011) Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 28:1927–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D (2009) Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Mol Biol Evol 26:313–326

    Article  CAS  PubMed  Google Scholar 

  • Quinn TW, Wilson AC (1993) Sequence evolution in and around the mitochondrial control region in birds. J Mol Evol 37:417–425

    Article  CAS  PubMed  Google Scholar 

  • Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol 47:449–462

    Article  CAS  PubMed  Google Scholar 

  • Reyes A, Gissi C, Catzeflis F, Nevo E, Pesole G, Saccone C (2004) Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol Biol Evol 21:397–403

    Article  CAS  PubMed  Google Scholar 

  • Roques S, Godoy JA, Negro JJ, Hiraldo F (2004) Organization and variation of the mitochondrial control region in two vulture species, Gypaetus barbatus and Neophron percnopterus. J Hered 95:332–337

    Article  CAS  PubMed  Google Scholar 

  • Russell RD, Beckenbach AT (2008) Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J Mol Evol 67:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccone C, Pesole G, Sbisá E (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33:83–91

    Article  CAS  PubMed  Google Scholar 

  • Sammler S, Bleidorn C, Tiedemann R (2011) Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination. BMC Genom 12:35

    Article  CAS  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140

    Article  PubMed  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven, pp 302–310

    Google Scholar 

  • Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114

    Article  CAS  PubMed  Google Scholar 

  • Southern ŠO, Southern PJ, Dizon AE (1988) Molecular characterization of a cloned dolphin mitochondrial genome. J Mol Evol 28:32–42

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nunome M, Kinoshita G, Aplin KP, Vogel P, Kryukov AP, Jin ML, Han SH, Maryanto I, Tsuchiya K, Ikeda H, Shiroishi T, Yonekawa H, Moriwaki K (2013) Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 111:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walberg MW, Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res 9:5411–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetmore A (1960) A classification for the birds of the world. Smithson Misc Coll 139:1–37

    Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Murata K, Matsuda H, Hosoda T, Tamura K, Furuyama J (2000) Determination of the complete nucleotide sequence and haplotypes in the D-loop region of the mitochondrial genome in the oriental white stork, Ciconia boyciana. Genes Genet Syst 75:25–32

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wu X, Yan P, Su X, Yang B (2010) Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences. Mol Biol Rep 37:3057–3066

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53:492–508

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang L, Gowda V, Wang M, Li X, Kan X (2012) The mitochondrial genome of the Cinnamon Bittern, Ixobrychus cinnamomeus (Pelecaniformes: Ardeidae): sequence, structure and phylogenetic analysis. Mol Biol Rep 39:8315–8326

    Article  CAS  PubMed  Google Scholar 

  • Zhong D, Zhao GJ, Zhang ZS, Xun AL (2002) Advance in the entire balance and local unbalance of base distribution in genome. Hereditas 24:351–355

    CAS  PubMed  Google Scholar 

  • Zou Y, Jing MD, Bi XX, Zhang T, Huang L (2015) The complete mitochondrial genome sequence of the little egret (Egretta garzetta). Genet Mol Biol 38:162–172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Scientific Foundation of China (No. 31371252) and the open project from the State Key Laboratory of Genetic Resource and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (GREKF15-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meidong Jing or Ling Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 KB)

10709_2017_9978_MOESM2_ESM.eps

Supplementary Fig. S1: Maximum likelihood (ML) and Bayesian tree based on mitogenome data (without CR and the third codon positions of the protein coding genes ) with the GTR+I+G model. The horizontal length of each branch corresponds to the substitution rates estimated with the model. Gallus gallus was used as outgroups. Numbers on the branches are Bayesian posterior probability and bootstrap values for ML (EPS 9580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhao, R., Zhang, T. et al. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes. Genetica 145, 431–440 (2017). https://doi.org/10.1007/s10709-017-9978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9978-6

Keywords

Navigation