Skip to main content
Log in

Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The numerical results that support the findings of this study are available from the corresponding author, R. Taslimian, upon reasonable request.

Abbreviations

SC:

Stone column

EPP:

Excess pore pressure

NF:

Near field

FF:

Far field

PGA:

Peak ground acceleration

PPI:

Pore pressure increment

\(PP_{D}\) :

Pore pressure (PP) using Darcy flow

\(PP_{ND}\) :

Pore pressure (PP) using non-Darcy flow

S:

Non-Darcy coefficient

\(\dot{w}\) :

Average relative velocity of fluid

\(\nabla p\) :

Pressure gradient resulting from fluid flow

\(\rho_{f}\) :

Density of pore fluid

g:

Gravitational acceleration

\(k\) :

Coefficient of permeability

\(n\) :

Porosity of porous media

\(D_{50}\) :

Average diameter of grains

\(k_{ji}\) :

Permeability tensor

\(\delta_{ji}\) :

Kronecker delta

\(p\) :

Pore fluid pressure

\(N_{ }^{u}\) :

Shape functions for solid phase

\(N_{ }^{w}\) :

Shape functions for fluid phase

B:

Strain matrix

\(D_{e}\) :

Elastic constitutive matrix

\(C\) :

Artificial damping matrix or Rayleigh damping applied to the solid phase

\(f_{b}\) :

Body forces on soil mixture

\(f_{b}^{\prime}\) :

Body forces on fluid

\(f_{\sigma }\) :

External stresses

\(f_{p}\) :

External pressures

\(i\) :

Hydraulic gradient

\(p_{1}\) :

Actual perimeter of SC

D:

SC diameter

\(p_{2}\) :

Perimeter of simulated plane strip

L:

Length of equivalent plain strip or spacing of SCs

\(k_{eq}\) :

Equivalent permeability

\(T\) :

Time period

Dr :

Relative density

\(\mathop P_{0}^{\prime }\) :

Initial mean effective stress

\(\mathop p^{\prime }\) :

Mean effective stress

\(q\) :

Deviatoric stress

\({\mathbb{M}}\) :

Mass matrix

\({\mathbb{C}}\) :

Damping matrix

\({\mathbb{f}}\) :

External load vector

References

  • Abdelhamid M, Ali N, Abdelaziz T (2023) A literature review of factors affecting the behavior of encased stone columns. Geotech Geol Eng 41:3253–3288. https://doi.org/10.1007/s10706-023-02492-8

    Article  Google Scholar 

  • Adalier K, Elgamal A (2004) Mitigation of liquefaction and associated ground deformations by stone columns. Eng Geol 72(3–4):275–291. https://doi.org/10.1016/j.enggeo.2003.11.001

    Article  Google Scholar 

  • Adalier K, Elgamal A, Meneses J, Baez JI (2003) Stone column as liquefaction countermeasure in non-plastic silty soils. Soil Dyn Earthquake Eng 23(7):571–584. https://doi.org/10.1016/S0267-7261(03)00070-8

    Article  Google Scholar 

  • Agah Nav M, Rahnavard R, Noorzad A, Napolitano R (2020) Numerical evaluation of the behavior of ordinary and reinforced stone columns. Structures 25:481–490. https://doi.org/10.1016/j.istruc.2020.03.021

    Article  Google Scholar 

  • Andrianopoulos KI, Papadimitriou AG, Bouckovalas GD (2010) Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil Dyn Earthquake Eng 30(10):895–911. https://doi.org/10.1016/j.soildyn.2010.04.001

    Article  Google Scholar 

  • Ardakani A, Dinarvand R, Namaei A (2020) Ultimate shear resistance of silty sands improved by stone columns estimation using neural network and imperialist competitive algorithm. Geotech Geol Eng 38:1485–1496. https://doi.org/10.1007/s10706-019-01104-8

    Article  Google Scholar 

  • Arulmoli K, Muraleetharan MMH, Fruth LS (1992) VELACS Laboratory testing program—soil data report, Earth Technology Corporation, project No. 90–0562, Irvine, California

  • Asgari A, Oliaei M, Bagheri M (2013) Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dyn Earthquake Eng 51(1):77–96. https://doi.org/10.1016/j.soildyn.2013.04.006

    Article  Google Scholar 

  • Ben Salem Z, Frikha W, Bouassida M (2015) Effect of granular-column installation on excess pore pressure variation during soil liquefaction. Int J Geomech 16(2):04015046. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000516

    Article  Google Scholar 

  • Bhochhibhoya S, Maharjan R, Adhikari R et al (2023) Suitability assessment of stone columns to improve soil foundation in kathmandu valley. Nepal Geotech Geol Eng 41:57–73. https://doi.org/10.1007/s10706-022-02262-y

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164. https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  • Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185. https://doi.org/10.1063/1.1721956

    Article  CAS  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid, part II-high-frequency range. J Acoust Soc Am 28(2):179–191. https://doi.org/10.1121/1.1908241

    Article  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498. https://doi.org/10.1063/1.1728759

    Article  Google Scholar 

  • Biot MA, Willis PG (1957) The elastic coefficients of the theory consolidation. J Appl Mech 24:59–60

    Article  Google Scholar 

  • Brennan AJ, Madabhushi SPG (2002) Effectiveness of vertical drains in mitigation of liquefaction. Soil Dyn Earthq Eng 22:1059–1069. https://doi.org/10.1016/S0267-7261(02)00131-8

    Article  Google Scholar 

  • Cao Z, Youd TL, Yuan X (2011) Gravelly soils that liquefied during 2008 Wenchuan, China earthquake Ms=8.0. Soil Dyn Earthquake Eng 31:1132–1143. https://doi.org/10.1016/j.soildyn.2011.04.001

    Article  Google Scholar 

  • Chai Z, Shi B, Lu J, Guo Z (2010) Non-Darcy flow in disordered porous media: a lattice Boltzmann study. J Comput Fluids 39:2069–2077. https://doi.org/10.1016/j.compfluid.2010.07.012

    Article  Google Scholar 

  • Chakraborty A, Sawant VA (2022) Numerical simulation of earthen embankment resting on liquefiable soil and remediation using stone columns. Int J Geomech 04022205:1–20. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002559

    Article  Google Scholar 

  • Chakraborty A, Sawant VA (2023) Earthquake response of embankment resting on liquefiable soil with different mitigation models. Nat Hazards 116(3):3093–3117

    Article  Google Scholar 

  • Chaloulos YK, Tasiopoulou P, Georgarakos T, Giannakou A, Chacko J, Unterseh S (2023) 3D Effective stress analyses of dynamic LNG tank performance on liquefiable soils improved with stone columns. Soil Dyn Earthq Eng 1(174):108170

    Article  Google Scholar 

  • Chan AHC, Famiyesin OO, Muir Wood D (1993) Numerical prediction for model No. 1 in verification of numerical procedures for the analysis of soil liquefaction problems (Eds) Arulanandan K, Scott RF, Davis UC, 17–20 Oct, 1, A. A. Balkema, Rotterdam. pp 87–108

  • Chan AHC (1998) A unified finite element solution to static and dynamic geomechanics problems. Dissertation, University College of Swansea.

  • Chavan D, Sitharam TG, Anbazhagan P (2022) Liquefaction resistance and cyclic response of air injected-desaturated sandy soil. Geotech Geol Eng 40:1851–1872. https://doi.org/10.1007/s10706-021-01996-5

    Article  Google Scholar 

  • Chen P, Lyu W, Liang X, Deng J, Li C, Yuan Y (2022) Multi-Factor Influence analysis on the liquefaction mitigation of stone columns composite foundation. Appl Sci 12(14):7308

    Article  CAS  Google Scholar 

  • Doan S, Fatahi B (2020) Analytical solution for free strain consolidation of stone column-reinforced soft ground considering spatial variation of total stress and strain resistance. Comput Geotech 118(103291):1–17. https://doi.org/10.1016/j.compgeo.2019.103291

    Article  Google Scholar 

  • Dobry R, Taboada V (1993) Report E II-b- VELACS project, centrifuge test results and comparisons for model No. 1 conducted at RPI, the university of California at Davis, and the university of Colorado at boulder, RPI, Troy NY. 12180–3590

  • Elgamal A, Lu J, Yang Z (2005) Liquefaction-induced settlement of shallow foundations and remediation: 3D numerical simulation. J Earthquake Eng 9:17–45. https://doi.org/10.1080/13632460509350578

    Article  Google Scholar 

  • Elgamal A, Lu J, Forcellini D (2009) Mitigation of liquefaction-induced lateral deformation in a sloping stratum: three-dimensional numerical simulation. J Geotech Geoenviron Eng 135(11):1672–1682. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000137

    Article  Google Scholar 

  • Ergun S (1952) Fluid flow through packed columns. J Chem Eng Sci 48:89–94

    CAS  Google Scholar 

  • FHWA (1983) Design and construction of stone column. Vol. 1. Report No. FHWA, RD-83/026

  • Gholaminejad A, Mahboubi Ardakani AR, Noorzad A (2020) Encased stone columns: coupled continuum-discrete modeling and observations. Geosynth Int 27(6):581–592. https://doi.org/10.1680/jgein.20.00017

    Article  Google Scholar 

  • Gholaminejad A, Mahboubi Ardakani AR, Noorzad A (2021) Hybrid continuous-discrete modeling of an ordinary stone column and micromechanical investigations. Geotech Geol Eng 39:3249–3264. https://doi.org/10.1007/s10706-021-01692-4

    Article  Google Scholar 

  • Ghorbani A, Rabanifar H (2021) The effect of lightweight expanded clay aggregate on the mitigation of liquefaction in shaking table. Geotech Geol Eng 39:1861–1875. https://doi.org/10.1007/s10706-020-01592-z

    Article  Google Scholar 

  • Hatanaka M, Uchida A, Ohara J (1997) Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake. Soils Found 37(3):107–115

    Article  Google Scholar 

  • Hosseinejad F, Kalateh F, Mojtahedi A (2019) Numerical Investigation of liquefaction in earth dams: a Comparison of Darcy and Non-Darcy flow models. Comput Geotech 116:103182. https://doi.org/10.1016/j.compgeo.2019.103182

    Article  Google Scholar 

  • Iraji A, Farzaneh O, Hosseininia ES (2014) A modification to dense sand dynamic simulation capability of Pastor–Zienkiewicz–Chan model. Acta Geotech 9:343–353

    Article  Google Scholar 

  • Kadlec HR, Knight LR (1996) Treatment wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  • Katona MG, Zienkiewicz OC (1985) A unified set of single step algorithms, Part 3-The beta-m method, a generalization of the Newmark scheme. Int J Num Meth Eng 21:1345–1359

    Article  Google Scholar 

  • Kovacs G (1981) Developments in water science. Seepage hydraulics. Elsevier, Amsterdam, p 10

    Google Scholar 

  • Krishnan J, Shukla S (2021) The utilisation of colloidal silica grout in soil stabilisation and liquefaction mitigation: a state of the art review. Geotech Geol Eng 39:2681–2706. https://doi.org/10.1007/s10706-020-01651-5

    Article  Google Scholar 

  • Kumar R, Takahashi A (2022) Reliability assessment of the performance of granular column in the nonuniform liquefiable ground to mitigate the liquefaction-induced ground deformation. Georisk Assess Manag Risk Eng Syst Geohazards 16(2):376–95

    Article  Google Scholar 

  • Kumar A, Kumari S, Sawant VA (2020) Numerical investigation of stone column improved ground for mitigation of liquefaction. Int J Geomech 20(9):04020144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001758

    Article  Google Scholar 

  • Kumar S, Puri VK (2001) Soil improvement using heavy tamping—a case history. ISET J Earthquake Technol 38(2–4):123–133

    Google Scholar 

  • Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys Rev E 61:6546–6562

    Article  CAS  Google Scholar 

  • Li P, Dashti S, Badanagki M, Kirkwood P (2018) Evaluating 2D numerical simulations of granular columns in level and gently sloping liquefiable sites using centrifuge experiments. Soil Dyn Earthquake Eng 110:232–243. https://doi.org/10.1016/j.soildyn.2018.03.023

    Article  Google Scholar 

  • Mitchell JK, Baxter CDP, Munson TC (1995) Performance of improved ground during earthquakes. Soil improvement for earthquake hazard mitigation (GSP 49), ASCE, San Diego, CA. pp 1–36

  • Newmark NM (1959) A method of computation for structural dynamics. Proc ASCE 8:67–94

    Google Scholar 

  • Noorzad A, Poorooshasb HB, Miura N (1997) An upper bound analysis of stone columns. In: Proceedings of the 6th international symposium on numerical models in geomechanics (NUMOG-VI), Montreal, Quebec, Canada, pp 239–244

  • Noorzad A, Poorooshasb HB, Madhav MR (2007) Performance of partially penetrating stone columns during an earthquake. In: Proceedings of 10th International Symposium on Numerical Models in Geomechanics (NUMOG X), Rhodes, Greece, pp 503–508

  • Noui A, Karech T, Bouzid T (2019) A numerical investigation of dynamic behaviour of a unit cell of a loose sand reinforced by stone column under the effect of gravity using Finn model. Indian Geotech J 49(3):255–264. https://doi.org/10.1007/s40098-018-0326-2

    Article  Google Scholar 

  • Nova R, Wood DM (1982) A constitutive model for sand under monotonic and cyclic loading. In: Pande GN, Zienkiewicz OC (eds) Soil mechanics transient and cyclic loads. Wiley, New York, pp 343–374

    Google Scholar 

  • Owen DRJ, Hinton E (1980) Finite element in plasticity: theory and practice. Pineridge Press Limited, Swansea

    Google Scholar 

  • Pal S, Deb K (2019) Effect of clogging of stone column on drainage capacity during soil liquefaction. Soils Found 59:196–207. https://doi.org/10.1016/j.sandf.2018.10.005

    Article  Google Scholar 

  • Panji M, Kamalian M, Asgari Marnani J, Jafari MK (2013) Transient analysis of wave propagations problems by half-plane BEM. Geophys J Int 194:1849–1865

    Article  Google Scholar 

  • Panji M, Kamalian M, Asgari Marnani J, Jafari MK (2014) Analyzing seismic convex topographies by a half-plane time-domain BEM. Geophys J Int 197(1):591–607

    Article  Google Scholar 

  • Pastor M, Zienkiewicz OC, Leung KH (1985) Simple model for transient soil loading in earthquake analysis—II, Non-associative models for sands. Int J Numer Anal Meth Geomech 9(5):477–498. https://doi.org/10.1002/nag.1610090506

    Article  Google Scholar 

  • Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and modeling of soil behavior. Int J Numer Anal Meth Geomech 14(3):151–190. https://doi.org/10.1002/nag.1610140302

    Article  Google Scholar 

  • Rayamajhi D, Ashford SA, Boulanger RW, Elgamal A (2016) Dense granular columns in liquefiable ground. I: Shear reinforcement and cyclic stress ratio reduction. J Geotech Geoenviron Eng 142(7):4016023

    Article  Google Scholar 

  • Sahin A, Cetin KO (2023) Gravelly liquefaction case histories after 2008 Wenchuan-China Earthquake Mw = 7.9. Int J Geosynth Ground Eng 9:42. https://doi.org/10.1007/s40891-023-00456-9

    Article  Google Scholar 

  • Salahi MB, Sedghi-Asl M, Parvizi M (2015) Nonlinear flow through a packed-column experiment. J Hydrol Eng 20(9):04015003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001166

    Article  Google Scholar 

  • Sasaki Y, Taniguchi E (1982) Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soil Found 22(3):1–14. https://doi.org/10.3208/sandf1972.22.3_1

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, Toronto

    Google Scholar 

  • Seed HB, Booker JR (1977) Stabilization of potentially liquefiable sand deposits using gravel drains. J Geotech Eng Div 103(7):757–768

    Article  Google Scholar 

  • Seed RB, Cetin KO, Moss RES, Kammerer AM, Wu J, Pestana JM, Riemer MF (2001) Recent advances in soil liquefaction engineering and seismic site response evaluation. San Diego, California. SPL-2, 1–45.

  • Seyedi-Viand SM, Eseller-Bayat EE (2022) Partial saturation as a liquefaction countermeasure: a review. Geotech Geol Eng 40:499–530. https://doi.org/10.1007/s10706-021-01926-5

    Article  Google Scholar 

  • Shenthan T, Nashed R, Thevanayagam S, Martin GR (2003) Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction. Earthquake Eng Eng Vib 3(1):39–50. https://doi.org/10.1007/BF02668849

    Article  Google Scholar 

  • Sun J, Sun H, Lu M, Han B (2024) Finite-difference solution for dissipation of excess pore water pressure within liquefied soil stabilized by stone columns with consideration of coupled radial-vertical seepage. Soil Dyn Earthq Eng 1(176):108328

    Article  Google Scholar 

  • Tang L, Zhang X, Ling X (2015) Numerical simulation of centrifuge experiments on liquefaction mitigation of silty soils using stone columns. KSCE J Civ Eng 20:631–638. https://doi.org/10.1007/s12205-015-0363-7

    Article  Google Scholar 

  • Taslimian R (2024) Turbulent-fluid-based simulation of dynamic liquefaction using large deformation analysis of solid phase. Am J Eng Appl Sci 17(2):51–55

    Google Scholar 

  • Taslimian R, Noorzad A, Maleki Javan MR (2015) Numerical simulation of liquefaction in porous media using nonlinear fluid flow law. Int J Numer Anal Meth Geomech 39(3):229–250. https://doi.org/10.1002/nag.2297

    Article  Google Scholar 

  • Taslimian R, Noorzad A, Maleki Javan MR (2023) Numerical analysis of liquefaction phenomenon considering irregular topographic interfaces between porous layers. J Earthquake Eng 27(5):1095–1109. https://doi.org/10.1080/13632469.2022.2038727

    Article  Google Scholar 

  • Taslimian R, Noorzad Ass, Noorzad A (2012) Modeling saturated porous media with elasto-plastic behavior and non-Darcy flow law considering different permeability coefficients. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September 24–28

  • Taslimian R (2012) Numerical simulation of liquefaction in saturated porous media with nonlinear flow considering irregular layers. M. Sc. Dissertation, University of Tehran

  • Thakur A, Rawat S, Gupta AK (2021) Experimental and numerical investigation of load carrying capacity of vertically and horizontally reinforced floating stone column group. Geotech Geol Eng 39:3003–3018. https://doi.org/10.1007/s10706-020-01674-y

    Article  Google Scholar 

  • Veiskarami M, Roshanali L, Habibagahi G (2022) Effect of particles shape on the hydraulic conductivity of stokesian flow in granular materials. Geotech Geol Eng 40:4645–4656. https://doi.org/10.1007/s10706-022-02175-w

    Article  Google Scholar 

  • VELACS project (1993) http://www.princeton.edu/~dynaflow/radu/soil/velacs/. Accessed 2020

  • Ward JC (1964) Turbulent flow in porous media. J Hydraul Div 90(5):1–12

    Article  Google Scholar 

  • Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Med 63:57–69. https://doi.org/10.1007/s11242-005-2720-3

    Article  CAS  Google Scholar 

  • Zhang X, Wang S, Su L, Zhu H, Liu H, Liu C, Cui J (2024) Mitigation of earthquake-induced liquefaction and lateral spread deformation by applying ground granulated blast furnace slag. Soil Dyn Earthq Eng 178:108493

    Article  Google Scholar 

  • Zhou YG, Liu K, Sun ZB, Chen YM (2021) Liquefaction mitigation mechanisms of stone column-improved ground by dynamic centrifuge model tests. Soil Dyn Earthq Eng 150:106946. https://doi.org/10.1016/j.soildyn.2021.106946

    Article  Google Scholar 

  • Zienkiewicz OC, Shiomi T (1984) Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. Int J Numer Anal Geomech 8:71–96. https://doi.org/10.1002/nag.1610080106

    Article  Google Scholar 

  • Zienkiewicz OC, Leung KH, Pastor M (1985) Simple model for transient soil loading in earthquake analysis—I, basic model and its application. Int J Numer Anal Meth Geomech 9:453–476. https://doi.org/10.1002/nag.1610090505

    Article  Google Scholar 

  • Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester

    Google Scholar 

  • Zienkiewicz OC, Mroz Z (1985) Generalized plasticity formulation and its application to geomechanics, mechanical engineering materials. In: Chapter 33, ed. C. S. Desai and R. H. Gallagher, 655–80. Wiley. Chichester

  • Zienkiewicz OC, Taylor RL (1991) The finite element method—Volume 2: solid and fluid mechanics, dynamics and non-linearity, 4th edn. McGraw-Hill Book Company, London

    Google Scholar 

  • Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990) Static and dynamic behavior of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proc R Soc London Math Phys Sci R Soc Publ 429(1877):285–309. https://doi.org/10.1098/rspa.1990.0061

    Article  Google Scholar 

  • Zienkiewicz OC (1982) Field equations for porous media under dynamic loads. Num Meth in Geomech, D. Reidel, Boston, U.S.A.

  • Zou YX, Zhang JM, Wang R (2020) Seismic analysis of stone column improved liquefiable ground using a plasticity model for coarse-grained soil. Comput Geotech 125:103690. https://doi.org/10.1016/j.compgeo.2020.103690

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance provided by Ms. Parisa Delalat during this research. Moreover, they gratefully acknowledge the contributions of Professor Andrew H.C. Chan for providing the computer program (DIANA-SWANDYNE II—GLADYS-2E) and for the invaluable guidance.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohollah Taslimian.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taslimian, R., Noorzad, A. Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory. Geotech Geol Eng (2024). https://doi.org/10.1007/s10706-024-02785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10706-024-02785-6

Keywords

Navigation