Skip to main content

Advertisement

Log in

Impact of Land use Changes on Landslides Occurrence in Urban Area: The Case of the Constantine City (NE Algeria)

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The city of Constantine (NE Algeria), the third largest city of the country (2.374 inhabitants/km2) is facing frequent damaging landslides that constitute a constraint to future development and land use planning. The main goals of this study are to evaluate the effect of land use changes on the spatial distribution of landslide hazard occurrence and give an example of landslide hazard assessment as useful tool within the context of long-term land use planning in the urban area of Constantine. For this purpose, the adopted methodology requires four steps: (i) Data collection and construction of a spatial database related to the historical landslides, land use, building and population inventory; (ii) landslide inventory and land use mapping for the period of 1970 to 2011 based on the analysis of aerial photographs, high resolution satellite images, historical records verified and completed by extensive field observations, (iii) analysis of the effects of land use changes on the spatial distribution of landslide occurrence for different periods 1970 and 2011; (iv) landslide hazard map, obtained by using the frequency ration (FR) under GIS and (v) evaluate the impact of human-induced land use changes on hazard occurrence. For that, we, firstly, compared the landslide inventory map with land use maps of different periods of 1970 and 2011 that showed that since 1970, the density of landslides increases with increasing of urban areas. In 2011, the high landslide density is concentrated on the following four layers: the urban area layer (41%), the agriculture land layer (39%), the grass area layer (15%) and the forest land layer (5%). The effect of the expansion of urban zone in agriculture, grass and pasture area have increase landslide densities over time. Secondly, we compared the landslide hazard map to these land use maps and we found that 40% of the high hazard zones and 50% of the moderate hazard zones fall in the urbanized area. The obtained results show a clear impact of the changed land use where human action is an important triggering and/or accelerating factor of landslides in the urban area of Constantine. Nowadays, about 72,749 inhabitants and 25,255 buildings are located in landslides threatened area. Therefore, landslide hazard maps should, always, guide the land use and urbanization in landslides prone areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Anis Z, Wissem G, Riheb H, Biswajeet P, Essghaier GM (2019) Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. J Afr Earth Sc 151:146–152

    Article  Google Scholar 

  • ANRH National Agency of Meteorology and Hydrology (2012) Rainfall database of the Constantine region covering a period of 42 years (1970–2012)

  • ARCADIS (2003) Etude des glissements de terrain de la ville de Constantine et de ses alentours. Unpublished Internal Report

  • Ayonghe SN, Ntasin EB (2003) The geological control and triggering mechanisms of landslides of 20th July 2003 within the Baboutos Caldera Cameroon. J Cameroon Acad Sci 7(3):191–204

    Google Scholar 

  • Benaissa A, Bellouche MA (1999) Propriétés géotechniques de quelques formations géologiques propices aux glissements de terrain dans l’agglomération de Constantine (Algérie). Bull Eng Geol Environ 57:301–310

    Article  Google Scholar 

  • Benaissa A, Cordary D, Giraud A (1989) Les mouvements de terrains dans la zone urbaine de Constantine (Algérie). Bull AIGI 740:85–90

    Google Scholar 

  • Benazzouz MT (2002) Les caractéristiques géomorphologiques des glissements de terrain a` Constantine (Algérie) : risques et aménagement. In: Proceedings of the Symposium ‘‘Geomorphology: from expert opinion to modelling’’, Strasbourg, France, pp 87–94.

  • Bizimana H (2015) Landslide occurrences in the hilly areas of Rwanda, their causes and protection measures. Disaster Sci Eng 1(1):1–7

    Google Scholar 

  • Bougdal R, Belhai D, Antoine P (2006) Géologie de la ville de Constantine et de ses environs. Bull Serv Géol de l’Algérie, Vol. 18, n° 2

  • Bouhadad Y (2013) Occurrence and impact of characteristic earthquakes in northern Algeria. J Nat hazards 67:1573–1840. https://doi.org/10.1007/s11069-013-0704-0

    Article  Google Scholar 

  • Bouhadad Y, Benhammouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (Mw = 5.2). Nat Hazards 54:261–272. https://doi.org/10.1007/s11069-009-9466-0

    Article  Google Scholar 

  • Bourenane H (2017) Analyse spatiale, évaluation et cartographie des risques naturels : Application à l’aménagement de la ville de Constantine (Nord Est Algérien). Thèse de Doctorat Es Sciences. Université de l’USTHB, Alger, 300 p

    Google Scholar 

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2014) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0616-6

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weights factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci. https://doi.org/10.1007/s12517-015-2222-8

    Article  Google Scholar 

  • Bourenane H, Bouhadad Y, Guettouche MS (2019) Flood hazard mapping in urban area using the hydrogeomorphological approach: case study of the Boumerzoug and Rhumel alluvial plains (Constantine city NE Algeria). J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2019.103602

    Article  Google Scholar 

  • Boussouf R (2002) D’une ville attractive à une ville répulsive, Laboratoire d’Aménagement du territoire, Université de Constantine, Algérie

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of the fourth international symposium on landslides. Canadian Geotechnical 1

  • Broothaerts N, Kissi E, Poesen J, Van Rompaey A, Getahun K, Van Ranst E, Diels J (2012) Spatial patterns, causes and consequences of landslides in the Gilgel gibe catchment. SW Ethiopia Catena 97(2012):127–136

    Article  Google Scholar 

  • Bruschi VM, Bonachea J, Remondo J, Gomez-Arozamena J, Rivas V, Barbieri M, Capocchi S, Soldati M, Cendrero A (2013) Land management versus natural factors in land instability: some examples in northern Spain. Environ Manag 52(2):398–416

    Article  Google Scholar 

  • CGS (2012) Seismic risk study of urban areas in Constantine City. Report, National Earthquake Engineering Research Center, CGS.

  • Claessens L, Lowe DJ, Hayward BW, Schaap BF, Schoorl JM, Veldkamp A (2006) Reconstructing high-magnitude/low frequency landslide events based on soil redistribution modelling and a Late-Holocene sediment record from New Zealand. Geomorphology 74:29–49

    Article  Google Scholar 

  • Collison A, Wade S, Griffiths J, Dehn M (2000) Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 55:205–218

    Article  Google Scholar 

  • Crozier MJ, Glade T (2005) Landslide hazard and risk: issues, concepts and approach. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 1–40

    Google Scholar 

  • Dahoua L, Yakovitch SV, Hadji R (2017) GIS-based technic for roadside-slope stability assessment: an bivariate approach for A1 East-west highway, North Algeria. Mining Science, 24.

  • Dahoua L, Yakovitch SV, Hadji R, Farid Z (2017). Landslide susceptibility mapping using analytic hierarchy process method in BBA-Bouira Region, case study of East-West Highway, NE Algeria. In Euro-Mediterranean Conference for Environmental Integration (pp. 1837–1840). Springer, Cham.

  • Dai FC, Lee CF, Li JXuZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Davies TC (1996) Landslide research in Kenya. J Afr Earth Sc 23(4):541–545

    Article  Google Scholar 

  • Depicker A, Govers G, Van Rompaey A, Havenith HB, Mateso JCM, Demitte O (2018) Landslides in a changing tropical environment: North Tanganyika-Rift Kivu zones. https://www.researchgate.net/publication/325176935

  • Djerbal L, Melbouci B (2012) Le glissement de terrain d’Ain El Hammam (Algérie):causes et évolution. Bull Eng Geol Environ 71:587–597. https://doi.org/10.1007/s10064-012-0423-x

    Article  Google Scholar 

  • Djerbal L, KhoudiI AN, Melbouci B, Bahar R (2017) Assessment and mapping of earthquake-induced landslides in Tigzirt City. Algeria Nat Hazards 87(3):1859–1879. https://doi.org/10.1007/s11069-017-2831-5

    Article  Google Scholar 

  • El Mekki A, Hadji R, Chemseddine F (2017) Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region. Mining Sci 24:237–235. https://doi.org/10.5277/msc172417

    Article  Google Scholar 

  • Genevois R (2000) Landslides hazard identification and risk evaluation in the town of Constantine (NE Algeria). Unpublished report, Euro-Med Pilot Project on Civil Protection, p. 31

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51(2003):297–314

    Article  Google Scholar 

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Proc Land 31(1):97–110. https://doi.org/10.1002/esp.1237

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Boll J, Elliot WJ, Foltz RB (2006) Spatially and temporally distributed modelling of landslide susceptibility. Geomorphology 80:178–198. https://doi.org/10.1016/j.geomorph.2006.02.011

    Article  Google Scholar 

  • Guemache MA, Chatelain JL, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). African Earth Sci 59(4–5):349–358

    Article  Google Scholar 

  • Guettouche MS (2012) Modeling and risk assessment of landslides using fuzzy logic. Application on the slopes of the Algerian Tell (Algeria). Arabian Geosci 39:1866–2751. https://doi.org/10.1007/s12517-012-0607-5

    Article  Google Scholar 

  • Gupta, (2001) Geomorphological controls on landslide activity in Du Totios Kroof, Western Cape Mountain. South Africa S Afr Geogr J 83(3):258–263

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hadji R, Boumazbeur A, Limani Y, Baghem M, El Madjid Chouabi A, Demdoum A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302:224–237

    Article  Google Scholar 

  • Hadji R, Limani Y, Demdoum A (2014) Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. In 2014 1st International Conference on Information and Communication Technologies for Disaster Management (ICT-DM). pp 1–10.

  • Hadji R, Rais K, Gadri L, Chouabi A, Hamed Y (2017) Slope failure characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities Northeast Algeria. Arab J Sci Eng 42(1):281–300. https://doi.org/10.1007/s13369-016-2046-1

    Article  Google Scholar 

  • Hadmoko DS (2007) Toward GIS-based integrated landslide hazard assessment: a critical overview. Indonesian Geogr 34:55–77

    Google Scholar 

  • Karim Z, Hadji R, Hamed Y (2019) GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotech Geol Eng 37(1):359–374

    Article  Google Scholar 

  • Karsli F, Atasoy M, Yalcin A, Demir O, Gokceoglu C (2009) Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monit Assess 156:241. https://doi.org/10.1007/s10661-008-0481-5

    Article  Google Scholar 

  • Kimaro DN, Msanya BM, Kilasara M, Mtakwa PW, Poesen J, Deckers JA (2000) Major factors influencing the occurrence of landslides in the northern slopes of the Uluguru Mountains, Tanzania

  • Knapen A, Kitutu MG, Poesen J, Breugelmans W, Deckers J, Muwanga A (2006) Landslides in a densely populated county at the foot slopes of mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165

    Article  Google Scholar 

  • Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and development. Proc VII Int Symp Landslides, Trondheim 1:35–52

    Google Scholar 

  • LNTPB (1980) Le pont de Sidi Rached. Etude des sols et propositions de confortement. Unpublished Internal reports, Laboratoire des Travaux Publics

    Google Scholar 

  • LTPE Laboratoire des Travaux Publics de l’Est (2010) Archives d’études géotechniques de sols de la ville de Constantine. Période (1970–2010). Unpublished Internal reports

  • Machane D, Bouhadad Y, Cheikhlounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geomorphologic and geological hazards in Algeria. Nat Hazards 45:295–308

    Article  Google Scholar 

  • Mahdadi F, Boumezbeur A, Hadji R, Kanungo DP, Zahri F (2018) GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province. NE Algeria Arab J Geosci 11(17):476

    Article  Google Scholar 

  • Manchar N, Benabbas C, Hadji R, Bouaicha F, Grecu F (2018) Landslide susceptibility assessment in Constantine region (NE Algeria) by means of statistical models. Studia Geotechnica et Mechanica 40(3):208–219

    Article  Google Scholar 

  • Mehrotra, G, Kanungo D, Mahadeviah K (1996) Landslide hazard assessment—a need for environmental management. In Proc. 7th international symposium on landslides (pp. 315–320). Norway: Trondheim.

  • Mertens K, Jacobs L, Maes J, Kabaseke C, Maertens M, Poesen J, Kervyn M, Vranken L (2016) The direct impact of landslides on household income in tropical regions: A case study from the Rwenzori Mountains in Uganda. Sci Total Environ 550:1032–1043. https://doi.org/10.1016/j.scitotenv.2016.01.171

    Article  Google Scholar 

  • Meusburger K, Alewell C (2008) Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland). Nat Hazards Earth Syst Sci 8:509–520. https://doi.org/10.5194/nhess-8-509-2008

    Article  Google Scholar 

  • Monsieurs E, Kirschbaum DB, Thiery W, van Lipzig N, Kervyn M, Demoulin A, Jacobs L, Kervyn F, Dewitte O (2017) Constraints on landslide-climate research imposed by the reality of fieldwork in Central Africa. Association of Environmental & Engineering Geologists (AEG). Third North American Symposium on Landslides. https://orbi.uliege.be/bitstream/2268/213093/1/Monsieurs%20et%20al%202017%20NASL.pdf.

  • Mwaniki MW, Agutu NO, Mbaka JG, Ngigi TG, Waithaka EH (2015) Landslide scar/soil erodibility mapping using Landsat TM/ETMþ bands 7 and 3 Normalised Difference Index: A case study of central region of Kenya. Appl Geogr 64:108–120

    Article  Google Scholar 

  • Nagarajan R, Roy A, Vinod KR, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Env 58:275–287. https://doi.org/10.1007/s100649900032

    Article  Google Scholar 

  • Ngecu WM, Ichang DW (1999) The environmental impact of landslides on the population living on the eastern footslopes of the Aberdare ranges in Kenya: a case study of Maringa Village Landslide. Environ Geol 38(3):259–264

    Article  Google Scholar 

  • Nguimbous-Kouoh JJ, Manguelle-Dicoum E (2010) Contribution of topographic and penetrometric measurements to a site characterization, case of the Kekem Landslide, National Road N°5 (Western Cameroon). Earth Sci Res S J 14(2):135–144

    Google Scholar 

  • NOS National Office of Statistics (2011) General Census of Population and Housing, Algeria

  • ONM (2012) The hydrometeorological data of Ain El Bey station for a time-period of 32 years (1980–2012), National office of meteorological (ONM)

  • Paulsen S, Krauter E, Hanisch J (1998) Glissements de terrain dans laville de Constantine (Algérie). Rapport final Inst Fédér Géosc Res Nat Hanovre.

  • Petley D, Hearn G, Hart A, Rosser N, Dunning S, Oven K, Mitchell W (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44

    Article  Google Scholar 

  • Pincent B, Bougdal R, Panet M, Bentabet A (2008) Le pont Sidi Rached a` Constantine (Algérie): une culée dans un grand glissement de terrain. Bull ServGeol Algeria 19(3):197–215

    Google Scholar 

  • Reichenbach P, Busca C, Mondini A C, Rossil M (2014) The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy) Environmental Management 54:1372–1384. DOI https://doi.org/10.1007/s00267-014-0357-0

  • Remondo J, Soto J, Gonzalez-Dıez A, Dıaz R, de Terana J, Cendrero A (2005) Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 66(2005):69–84

    Article  Google Scholar 

  • RGPH (2008) 5ème Recensement de la Population et de l’Habitat en Algérie de l’Office National des Statistiques. ONS, Avril, p 2008

    Google Scholar 

  • Schmidt J, Dikau R (2004) Modeling historical climate variability and slope stability. Geomorphology 60:433–447

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds) Landslides: investigation and mitigation. Transport Research Board Special Report, vol 247. pp 129–177

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59. https://doi.org/10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • Turrini MC, Visintainer P (1998) Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy. Eng Geol 50:255–265. https://doi.org/10.1016/S0013-7952(98)00022-2

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Van Gils M, Van Rompaey A, Vandekerckhove L (2009) How do humans interact with their environment in residential areas prone to landsliding? A case study from the Flemish Ardennes. In: Proceedings of the international conference on ‘‘landslide processes: from geomorphologic mapping to dynamic modelling,’’ Strasbourg, France, 6–7 pp 19–24

  • Van Westen CJ (1997) Statistical landslide hazar analysis ILWIS 2.1for Windows application guide. ITC publication, Enschede, The Netherlands, pp 73–84

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Van Westen CJ, Van Asch Th WJ, Soeters R (2006) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, Deckers J, De Bievre B (2003) Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology 52:299–315

    Article  Google Scholar 

  • Stephen GV (1998) Les glissements de terrain dans la ville de Constantine, Algérie: géologie, géotechnique et travaux de correction potentielle. Rapport d’expertise Commission geologique du Canada. Unpublished reports

  • Varnes DJ (1978) Slope movement, types and processes. In: Schuster RL, Krizek RJ (Eds) Landslides, analyses and control. National Academy of Science, Report 176, Washington, DC, pp 11–35

  • Westerberg LO, Christiansson C (1999) Highlands in East Africa: unstable slopes, unstable environments? Ambio 28(5):419–429

    Google Scholar 

  • Zogning A, Ngouanet C, Tiafack O (2007) The catastrophic geomorphological processes in humid tropical Africa: A case study of the recent landslide disasters in Cameroon. Sediment Geol 199(2007):13–27

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks and gratitude to the local companies (ONM, LNTPB, LTPE, NOS and ANRH) for providing various datasets needed in this research. The authors are also grateful to the anonymous reviewers for their constructive comments that helped us to improve the early version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bourenane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourenane, H., Bouhadad, Y. Impact of Land use Changes on Landslides Occurrence in Urban Area: The Case of the Constantine City (NE Algeria). Geotech Geol Eng 39, 1–21 (2021). https://doi.org/10.1007/s10706-021-01768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-021-01768-1

Keywords

Navigation