Skip to main content
Log in

Assessing the Hydrogeological Conditions Leading to the Corrosion and Deterioration of Pre-cast Segmental Concrete Linings (Case of Zagros Tunnel)

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Underground excavations are naturally under deteriorating environments due to corrosive ground water, type of minerals, and rock mass structures. The abundant of water (e.g., humidity and the inflow of groundwater), and the presence of chemical materials are among the main reasons creating such environments. Rock formations also contain minerals, which may be dissolved in the stream of groundwater and react with support measures (e.g., rock bolts, shotcrete and concrete linings). Deterioration is the main factor leading to the decay of the support systems and consequently affecting their functioning. The deterioration of support measures may result in significant consequences such as the failure of supports and the collapse of underground excavations, in long-term. It is, therefore, vitally required to investigate the long-term deterioration and behaviour of supports, and to find suitable approaches for mitigating the undesirable consequences of this natural phenomenon. Hence, the main scope of this study is to investigate the hydrogeological factors resulting in the deterioration of the segmental concrete linings at Zagros water transfer tunnel, located in the West of Iran. The key factors governing the deterioration mechanisms are identified and discussed based on a combination of field observation, laboratory testing and the literature studying of similar cases. The outcomes of these studies indicate that sulfate attack has been the crucial mechanism leading to the deterioration of the concrete linings in the Zagros tunnel. The hydrogeological condition of the tunnel well satisfies the four risk factors previously found by the UK Thaumasite Expert Group. The tunnel segmental concrete linings are, therefore, highly prone to sulfate attack. This study also shows that tunnelling through H2S and water bearing grounds has been the main reason providing such a deteriorating environment. The existence of organic materials (e.g., oil and coal) in the surrounding sedimentary rocks is expected to be the main source of H2S gases. The study is eventually complemented by proposing a few practical techniques to prevent further damage of the segmental linings, due to chemo-physical deteriorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted and modified from Ghafarian et al. (2016)

Fig. 2
Fig. 3
Fig. 4

(Courtesy of Mirmehrabi et al. 2010)

Fig. 5
Fig. 6
Fig. 7
Fig. 8

(Courtesy of Mirmehrabi et al. 2010)

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

(Adopted and modified from Tseng et al. 2001; Fouladgar 2004)

Fig. 16

Similar content being viewed by others

References

  • Abbas S, Soliman AM, Nehdi M (2012) Mechanical and durability performance of precast tunnel linings. Paper presented at the Montreal TAC 2012, tunnels and underground spaces: sustainability and innovations, Montreal, Canada

  • Abbas S, Soliman AM, Nehdi ML (2014) Chloride ion penetration in reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments. ACI Mater J 111:613–621

    Google Scholar 

  • Aggelis D, Shiotani T, Kasai K (2008) Evaluation of grouting in tunnel lining using impact-echo. Tunn Undergr Space Technol 23:629–637

    Article  Google Scholar 

  • Ahmadkhani M (2013) Assessing the factors leading to the acidic attack and decaying of concrete and the consequences (in Persian). Paper presented at the 5th Iranian annual concrete conference

  • Alsinawi SA, Al-Bazzaz AH (1975) A brief review of the alkali–silica in concrete and their applications to Iraqi aggregates. Eng Geol 9:123–139

    Article  Google Scholar 

  • Annett MF (1994) Grouting of tunnel linings, Structural Grouts In: Domone PLJJ, Jefferis SA (eds) Blackie academic & professional - an imprint of Chapman & Hall, Chap 9, pp 176–193

  • Attiogbe EK, Rizkalla SH (1988) Response of concrete to sulfuric acid attack. ACI Mater J 85:481–488

    Google Scholar 

  • Bayati M, Hamidi JK (2017) A case study on TBM tunnelling in fault zones and lessons learned from ground improvement. Tunn Undergr Space Technol 63:162–170

    Article  Google Scholar 

  • Bellmann F, Erfurt W, Ludwig HM (2012) Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources. Cem Concr Compos 34:86–93

    Article  Google Scholar 

  • Biczok I (1967) Concrete corrosion and concrete protection (second impression). Chemical Publishing Company Inc, Palm Springs

    Google Scholar 

  • Crammond NJ (2003) The thaumasite form of sulfate attack in the UK. Cem Concr Compos 25:809–818

    Article  Google Scholar 

  • Davis AG, Lim MK, Petersen CG (2005) Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods. NDT E Int 38:181–186

    Article  Google Scholar 

  • Eftekhari A, Hamidi JK (2009) Geological hazards in TBM tunnelling—a case study from Zagros long tunnel. Paper presented at the 8th Iranian tunnelling conference, Tarbiat Modares University

  • Fookes PG (1980) An introduction to the influence of natural aggregates on the performance and durability of concrete. Q J Eng GeolHydrogeol 13:207–229

    Article  Google Scholar 

  • Fouladgar A (2004) An overview of Koohrang-III water conveyance project and a brief review of the methods of excavation in different tunnel faces and adits (in Persian). Paper presented at the 6th Iranian tunnelling conference, Iran University of Science and Technology, Tehran, Iran

  • Ghafarian P, Gholami S, Owlad E, Gerivani H (2016) Rainfall–runoff temporal variability in Kermanshah province, Iran and distinguishing anthropogenic effects from climatic effects. J Earth Syst Sci 125:1299–1311. https://doi.org/10.1007/s12040-016-0731-9

    Article  Google Scholar 

  • Ghazban F, Motiei H (2010) Petroleum geology of the Persian Gulf. Tehran University Press, Tehran

    Google Scholar 

  • Hagelia P (2011) Deterioration mechanisms and durability of sprayed concrete for rock support in tunnels. The University of Oslo, Oslo

    Google Scholar 

  • Hagelia P, Sibbick RG, Crammond NJ, Larsen CK (2003) Thaumasite and secondary calcite in some Norwegian concretes. Cem Concr Compos 25:1131–1140

    Article  Google Scholar 

  • Hassanpor J, Rostami J, Khamehchiyan M, Bruland A (2009) Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomech Geoeng Int J 4:287–297

    Article  Google Scholar 

  • Hassanpor J, Ghaedi Vanani AA, Rostami J, Cheshomi A (2016) Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel (ZWCT2). Tunn Undergr Space Technol 52:147–156

    Article  Google Scholar 

  • Hobbs DW, Taylor MG (2000) Nature of the thaumasite sulfate attack mechanism in field concrete. Cem Concr Res 30:529–533

    Article  Google Scholar 

  • Hoff CHWD (2009) Water transport in brick, stone and concrete. CRC Press, Boca Raton

    Google Scholar 

  • Inokuma A, Inano S (1996) Road tunnels in Japan: deterioration and countermeasures. Tunn Undergr Space Technol 11:305–309

    Article  Google Scholar 

  • Irassar EF (2009) Sulfate attack on cementitious materials containing limestone filler—a review. Cem Concr Res 39:241–254

    Article  Google Scholar 

  • John DAS (1982) An unusal case of ground water sulphate attack on concrete. Cem Concr Res 12:633–639

    Article  Google Scholar 

  • Khave GJ (2013) TBM tunnelling in hydrogen sulfide gas bearing ground and its solutions. Geotech Geol Eng 31:1621–1638. https://doi.org/10.1007/s10706-013-9669-8

    Article  Google Scholar 

  • Khave GJ (2014) Delineating subterranean water conduits using hydraulic testing and machine performance parameters in TBM tunnel post-grouting. Int J Rock Mech Min Sci 70:308–317

    Article  Google Scholar 

  • Larsen G (1966) Petrographic method used in the study of leaching of cement paste in concrete. Eng Geol 1:189–199

    Article  Google Scholar 

  • Lei M, Peng L, Shi C, Wang S (2013) Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack. Tunn Undergr Space Technol 36:5–13

    Article  Google Scholar 

  • Liu J, Vipulanandan C (2001) Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunn Undergr Space Technol 16:311–321

    Article  Google Scholar 

  • Mays GC (1992) Durability of concrete structures: investigation, repair, protection. E & FN Spon, London

    Google Scholar 

  • Mirmehrabi H, Ghafoori M, Lashkaripour G, Hassanpor J (2010) Hazards associated with tunnelling in gas bearing grounds—a case study of Aspar (lot 2 of Zagros) water transmission tunnel (in Persian). Sci Technol Environ Eng 93:51–66

    Google Scholar 

  • Mirmehrabi H, Ghafoori M, Lashkaripour G, Azali ST, Hassanpour J (2011) Hazards of mechanized tunnel excavation in H2S bearing ground in Aspar tunnel, Iran. Environ Earth Sci 66:529–535

    Article  Google Scholar 

  • Mittermayr F, Bauer C, Klammer D, Böttcher ME, Leis A, Escher P, Dietzel M (2012) Concrete under sulphate attack: an isotope study on sulphur sources. Isot Environ Health Stud 48:105–117

    Article  Google Scholar 

  • Mohammed TU, Hamada H (2006) Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater J 103:233–242

    Google Scholar 

  • Mohammed TU, Hamada H, Yamaji T (2004) Concrete after 30 years of exposure—part II: chloride ingress and corrosion of steel bars. ACI Mater J 101:13–18

    Google Scholar 

  • Moodi F, Ramezanianpour AA, Chenar QB, Esteghamati MZ (2015) Evaluation of sulfate damages in a tunnel concrete segments. In: Concrete repair, rehabilitation and retrofitting IV: proceedings of the 4th international conference on concrete repair, rehabilitation and retrofitting (ICCRRR-4), 5–7 October 2015, Leipzig, Germany, 2015. CRC Press, p 251

  • Morsali M, Rezaei M (2017) Assessment of H2S emission hazards into tunnels: the Nosoud tunnel case study from Iran. Environ Earth Sci 76:227

    Article  Google Scholar 

  • Mossmark F (2014) Prediction of groundwater chemistry in conjunction with underground construction—field studies and hydrochemical modelling. Chalmers University of Technology, Göteborg

    Google Scholar 

  • Mostoufinejad D (2003) Concrete technology. Arkan Publication, Isfahan

    Google Scholar 

  • Nazemi M (2017) Personal photos gallery of geotechnical problems at the Zagros tunnel

  • Nielsen P, Nicolai S, Darimont A, Kestemont X (2014) Influence of cement and aggregate type on thaumasite formation in concrete. Cem Concr Compos 53:115–126

    Article  Google Scholar 

  • Rahman MM, Bassuoni MT (2014) Thaumasite sulfate attack on concrete: mechanisms, influential factors and mitigation. Constr Build Mater 73:652–662

    Article  Google Scholar 

  • Rajesh R, Brindha K, Elango L (2015) Groundwater quality and its hydrochemical characteristics in a shallow weathered rock aquifer of Southern India Water Quality. Expo Health 7:515–524

    Article  Google Scholar 

  • Ramezanianpour AA (2011) Concrete design (in Persian). Sanat-Gostar Publication, Tehran

    Google Scholar 

  • Ramezanianpour AA, Zolfagharnasab A, Bahmanzadeh F, Ramezanianpour AM (2018) Assessment of high performance concrete containing mineral admixtures under sulfuric acid attack (in Persian). Amirkabir J Civil Eng 50:121–138

    Google Scholar 

  • Rezaee MR (2001) Petroleum geology (in Persian). Alavi Publication, Tehran

    Google Scholar 

  • Romer M (2003a) Detachment of shotcrete due to long term interaction with ground water. Paper presented at the international seminar on the thaumasite form of sulfate attack of concrete

  • Romer M (2003b) Steam locomotive soot and the formation of thaumasite in shotcrete. Cem Concr Compos 25:1173–1176

    Article  Google Scholar 

  • Romer M, Holzer L, Pfiffner M (2003) Swiss tunnel structures: concrete damage by formation of thaumasite. Cem Concr Compos 25:1111–1117

    Article  Google Scholar 

  • Saglamoglu S (2012) Groundwater chemistry and its influence on the selection of construction materials—a review of four traffic tunnels in Sweden and evaluation of technical requirements. Chalmers University of Technology, Göteborg

    Google Scholar 

  • Shahriar K, Sharifzadeh M, Khademi Hamidi J (2008) Geotechnical risk assessment based approach for rock TBM selection in difficult ground conditions. Tunn Undergr Space Technol 23:318–325

    Article  Google Scholar 

  • Sims I, Huntley (née Hartshorn) SA (2004) The thaumasite form of sulfate attack-breaking the rules. Cem Concr Compos 26:837–844

    Article  Google Scholar 

  • Suleiman AR, Soliman AM, Nehdi ML (2014) Effect of surface treatment on durability of concrete exposed to physical sulfate attack. Constr Build Mater 73:674–681

    Article  Google Scholar 

  • Talesnick M, Baker R (1999) Investigation of the failure of a concrete-lined steel pipe. Geotech Geol Eng 17:99–121

    Article  Google Scholar 

  • Tali N, Lashkaripour GR, Ghafoori M, Hafezi Moghadas N (2014) Problems of mechanized tunnelling in gassy ground conditions—a case study of Nosoud water transmission tunnel. Int J Geogr Geol 3:101–113

    Google Scholar 

  • Tseng D-J, Tsai B-R, Chang L-C (2001) A case study on ground treatment for a rock tunnel with high groundwater ingression in Taiwan. Tunn Undergr Space Technol 16:175–183

    Article  Google Scholar 

  • Usman M, Galler R (2013) Long-term deterioration of lining in tunnels. Int J Rock Mech Min Sci 64:84–89

    Article  Google Scholar 

  • Usman M, Volderauer C, Gschwandtner G, Galler R (2011) Three dimensional load analysis of tunnel linings including weathering processes of the shotcrete. Berg Hüttenmännische Monatshefte (BHM) 156:487–491

    Article  Google Scholar 

  • Vik E et al (2000) Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten tunnel. Tunn Undergr Space Technol 15:369–378

    Article  Google Scholar 

  • Wang X, Liu X (2003) A strain-softening model for steel–concrete bond. Cem Concr Res 33:1669–1673

    Article  Google Scholar 

  • Wells T, Melchers RE (2014) An observation-based model for corrosion of concrete sewers under aggressive conditions. Cem Concr Res 61–62:1–10. https://doi.org/10.1016/j.cemconres.2014.03.013

    Article  Google Scholar 

  • Wells T, Melchers RE (2015) Modelling concrete deterioration in sewers using theory and field observations. Cem Concr Res 77:82–96. https://doi.org/10.1016/j.cemconres.2015.07.003

    Article  Google Scholar 

  • Zhiqiang Z, Mansoor YA (2013) Evaluating the strength of corroded tunnel lining under limiting corrosion conditions. Tunn Undergr Space Technol 38:464–475

    Article  Google Scholar 

Download references

Acknowledgements

The technical supports provided by Dr. B. Rafiei, Dr. M. Tadayon, Dr. M. Heidari, Mr. M. Zaker Esteghamati and Mr. M. Nazemi, during the course of this study, are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Fathi Salmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi Salmi, E., Soltani Asadi, Z., Bayati, M. et al. Assessing the Hydrogeological Conditions Leading to the Corrosion and Deterioration of Pre-cast Segmental Concrete Linings (Case of Zagros Tunnel). Geotech Geol Eng 37, 3961–3983 (2019). https://doi.org/10.1007/s10706-019-00886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-019-00886-1

Keywords

Navigation