Skip to main content
Log in

Effectiveness of Lime Treatment of Coarse Soils Against Internal Erosion

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The construction of embankments and other earth hydraulic structures using coarse soils requires assessing their potential for internal erosion by suffusion, defined as detachment and transport of fine particles through the matrix constrictions under internal flow. For potentially erodible coarse soils containing a certain amount of clays, a possible remedial solution is the lime treatment which is studied in this work in an experimental program consisting in: erosion test, crumb test, unconfined compression test and microstructure characterization tests (SEM, mercury intrusion porosity). The experiments were carried out on a reconstituted soil owing similar characteristics to natural coarse soils. The treatment reported in this study is carried out using a minimum lime content of only 1%, which can be achieved in situ in a cost-effective manner. Comparisons of results on treated and untreated soils showed that the lime treatment is effective after only 24 h of treatment. The suffusion is stopped, the agglomeration of the particles generated by the treatment seems to be maintained after samples immersion and the unconfined compressive strength (UCS) is improved. The microstructure observations of the fine part of the soil (particles smaller than 1 mm) showed the appearance of agglomerates generating an increase of the pore volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • AFNOR (1992) NF P 11-300. Exécution des terassements: Classification des matériaux utilisables dans la construction des remblais et des couches de forme d’infracstructues routières. Recueil Normes Géotechniques, AFNOR

  • AFNOR (1993) NF P 98-230-3. Essais relatifs aux chaussées: Préparation des matériaux traités aux liants hydrauliques ou non traités—Partie 3: Fabrication en laboratoire de mélange de graves ou de sables pour la confection d’éprouvettes. Recueil Normes Géotechniques, AFNOR

  • AFNOR (1997) NF P 94-077. Sols: Reconnaissance et Essais—Essai de compression uniaxiale. Recueil Normes Géotechniques, AFNOR

  • Ahmed S, Lovell CW, Diamonds S (1974) Pores size and strength of compacted clay. J Geotech Eng 100(4):407–425

    Google Scholar 

  • Al-Mukhtar M, Lasledj A, Alcover JF (2010) Behaviour and mineralogy changes in lime-treated expansive soil at 20°C. Appl Clay Sci 50(2):191–198

    Article  Google Scholar 

  • Al-Mukhtar M, Khattab S, Alcover JF (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng Geol 139–140:17–27

    Article  Google Scholar 

  • ANCOLD (1978) Bulletin of the Australian national committee on large dams, issue no. 51, p 55

  • ASTM standard D 6572-13 (2013) Standard test methods for determining dispersive characteristics of clayey soils by the crumb test. American Society for Testing and Materials

  • Basma AA, Tuncer ER (1991) Effect of lime on volume change and compressibility of expansive clays. Transp Res Rec 1295:52–61

    Google Scholar 

  • Bell FG (1996) Lime stabilization of clay minerals and soils. Eng Geol 42:223–237

    Article  Google Scholar 

  • Boardman DI, Glendinning S, Rogers CDF (2001) Development of stabilization and solidification in lime–clay mixes. Geotechnique 51(6):533–543

    Article  Google Scholar 

  • Charles I, Herrier G, Chevalier C (2012) An experimental full-scale hydraulic earthen structure in lime treated soil. In: 6th International conference on scour and erosion, Paris, France, No. 290, p 8

  • Choquette M, Bérubé MA, Locat J (1987) Mineralogical and microtextural changes associated with lime stabilization of marine clays from eastern Canada. Appl Clay Sci 2:215–232

    Article  Google Scholar 

  • Cuisinier O, Auriol JC, Le Borgne T, Deneele D (2011) Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng Geol 123(3):187–193

    Article  Google Scholar 

  • Delage P, Pellerin FM (1984) Influence de la lyophilisation sur la structure d’une argile sensible du Québec. Clay Miner 19:151–160

    Article  Google Scholar 

  • Delage P, Marcial D, Cui Y-J, Ruiz X (2006) Ageing effects in a compacted bentonite: a microstructure approach. Geotechnique 56(5):291–304

    Article  Google Scholar 

  • Diamond S (1971) Microstructure and pore structure of compacted clays. Clays Clay Miner 19(4):239–241

    Article  Google Scholar 

  • Feia S, Dupla JC, Ghabezloo S, Sulem J, Canou J, Onaisi A, Lescanne H, Aubry E (2015) Experimental investigation of particle suspension injection and permeability impairment in porous media. Geomech Energy Environ 3:24–29

    Article  Google Scholar 

  • Haghighi I (2012) Caractérisation des phénomènes d’érosion et de dispersion des sols: développement d’essais et applications pratiques. Ph.D. thesis, Université Paris-Est

  • Howard AK, Bara JP (1978) Lime stabilization on Friant- Kern Canal. U.S. Bureau of Reclamation, Report No REC-ERC-76-20

  • Hunter D (1988) Lime induced heave in sulfate-bearing clay soils. J Geotech Eng ASCE 114(2):150–167

    Article  Google Scholar 

  • Khattab SAA (2002) Etude multi-échelles d’un sol argileux plastique traité à la chaux. Ph.D. thesis, University of Orléans, France

  • Lasledj A (2009) Traitement des sols argileux à la chaux: processus physico-chimique et propriétés géotechniques. Ph.D. thesis, University of Orléans, France

  • Le Runigo B (2008) Durabilité d’un limon traité à la chaux et soumis à différentes sollicitations hydrauliques: comportements physico-chimique, microstructural, hydraulique et mécanique. Ph.D. thesis, Université de Nantes

  • Le Runigo B, Ferber V, Cui YJ, Cuisinier O, Deneele D (2011) Performance of lime-treated silty soil under long-term hydraulic conditions. Eng Geol 118(1–2):20–28

    Article  Google Scholar 

  • Lemaire K, Deneele D, Bonnet S, Legret M (2013) Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng Geol 166:255–261

    Article  Google Scholar 

  • Lioret A, Villar MV, Sánchez M, Gens A, Pintado X, Alonso EE (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Geotechnique 53(1):27–40

    Article  Google Scholar 

  • Locat J, Tremblay H, Leroueil S (1996) Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can Geotech J 33(4):654–669

    Article  Google Scholar 

  • Makki-Szymkiewicz L, Hibouche A, Taibi S, Herrier G, Lesueur D, Fleureau JM (2015) Evolution of the properties of lime-treated silty soil in a small experimental embankment. Eng Geol 191:8–22

    Article  Google Scholar 

  • Maubec N (2010) Approche multi-échelle du traitement des sols à la chaux, études des interactions avec les argiles. Ph.D. thesis, Université de Nantes, France

  • Nguyen TTH (2015) Stabilisation des sols traités à la chaux et leur comportement au gel. Thèse de doctorat. Ecole doctorale Paris-Est

  • Osula DOA (1996) A comparative evaluation of cement and lime modification laterite. Eng Geol 42(1):71–81

    Article  Google Scholar 

  • Perry JP (1977) Lime treatment of dams constructed with dispersive clay soil. Trans ASAE 20:1093–1099

    Article  Google Scholar 

  • Petry TM, Berger EA (2006) Impact of moisture content on strength gain in lime-treated soils. In: Transportation Research Board, 85th Annual Meeting, Paper 06-2764 (p 16)

  • Rogers CDF, Glendinning S (1996) Modification of clay soils using lime. In: Rogers CDF, Glendinning S, Dixon N (eds) Lime stabilisation. Thomas Telford, London, pp 99–114

    Google Scholar 

  • Rossi P, Ildefonse P, De Nobrega M, Chauvel A (1983) Study of structural and mineralogical transformations caused by compaction with or without lime addition to lateritic clays from Brazil. Bull Int Assoc Eng Geol 28:153–159

    Article  Google Scholar 

  • Stoltz G, Cuisinier O, Masrouri F (2012) Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. Appl Clay Sci 61:44–51

    Article  Google Scholar 

  • Tran TD, Cui YJ, Tang AM, Audiguier M, Cojean R (2014) Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. J Rock Mech Geotech Eng 6(5):399–404

    Article  Google Scholar 

  • Wild S, Arabi MR, Leng-Ward G (1993) Sulphate expansion of lime stabilized kaolinite II: reaction products and expansion. Clay Miner 28(4):569–583

    Article  Google Scholar 

Download references

Acknowledgements

These works were carried out in partnership with “Fédération Française des Travaux Publics -Comité Sol”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elandaloussi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elandaloussi, R., Bennabi, A., Dupla, J.C. et al. Effectiveness of Lime Treatment of Coarse Soils Against Internal Erosion. Geotech Geol Eng 37, 139–154 (2019). https://doi.org/10.1007/s10706-018-0598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-018-0598-4

Keywords

Navigation