Skip to main content
Log in

A Reservoir–Geomechanical Model to Study the Likelihood of Tensile and Shear Failure in the Caprock of Weyburn CCS Project with Regard to Interpretation of Microseismic Data

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

According to poroelastic theory and also field observations, an increase in reservoir pore pressures can result in a decrease in horizontal stresses in the seal layers. This reduction is in favor of hydrofracture initiation and reactivation of weak planes and has to be studied in caprock integrity analyses. In this paper, a field scale reservoir–geomechanical (GEM-FLAC3D) model is developed for the Phase IB area of the Weyburn (Canada) CCS project that is located in Williston sedimentary basin. A one-way coupling has been conducted between the two codes for the period of CO2 injection in Phase IB area from 2000 to 2010. Therefore, the reservoir pore pressures at selected timesteps are unidirectionally fed to the FLAC3D. In order to study the likelihood of tensile and shear failure in the seal layer on top as a result of stress transfer due to poroelastic effects, two margin ratios are defined for tensile and shear failure and their variations are studied above the reservoir upon changes in pore pressures within the reservoir. The results show that overall; the likelihood of shear failure has been about 25% greater than that of tensile failure in Weyburn. However, between 2008 and 2009, the pressures were high enough to trigger both tensile and shear mechanisms above the reservoir. A discussion is also presented on relevance of this study for interpretation of microseismic data with regard to failure margin ratios, magnitudes and distribution of events recorded in each year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Angus DA, Kendall J, Fisher QJ, Segura JM, Skachkov S, Crook AJL, Dutko M (2010) Modelling microseismicity of a producing reservoir from coupled fluid flow and geomechanical simulation. Geophys Prospect 58(5):901–914

    Article  Google Scholar 

  • Baisch S, Vörös R, Rothert E, Stang H, Jung R, Schellschmidt R (2010) A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts. Int J Rock Mech Min Sci 47(3):405–413

    Article  Google Scholar 

  • Bell JS, Babcock EA (1986) The stress regime of the Western Canadian Basin and implications for hydrocarbon production. Bull Can Pet Geol 34(3) 364–378. Retrieved from http://bcpg.geoscienceworld.org/content/34/3/364.citation

  • Bell JS, Price PR, McLellan PJ (1994) In-situ stress in the Western Canada sedimentary basin. In: Mossop GD, Shetsen I (eds) Geological atlas of the Western Canada sedimentary basin. Canadian Society of Petroleum Geologists, Alberta Research Council, pp 439–446

  • Bradford I (2013) Correlating the distribution of microseismic events with the stress state for multi-stage stimulations. In: 4th EAGE passive seismic workshop

  • Brown LT (2002) Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn field. Colorado School of Mines, Saskatchewan

    Google Scholar 

  • Bunge RJ (2001) Weyburn reservoir fracture characterization using integrated well and seismic data, Weyburn field, Saskatchewan. M.Sc Thesis. doi: 10.1306/61EED79C-173E-11D7-8645000102C1865D

  • Burrowes G, Gilboy C (2000) Investigating sequestration potential of carbonate rocks during tertiary recovery from a billion barrel oil field, Weyburn, Saskatchewan: the geoscience framework (IEA Weyburn CO2 Monitoring and Storage Project)

  • Chadwick A, Eiken O (2013) Offshore CO2 storage: sleipner natural gas field beneath the North Sea. Geological storage of Carbon Dioxide (CO2): Geoscience, Technologies, Environmental Aspects and Legal Frameworks, 227

  • Chadwick A, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN (2004) Geological reservoir characterization of a CO2 storage site: the Utsira Sand, Sleipner, northern North Sea. Energy 29(9):1371–1381

    Article  Google Scholar 

  • Chadwick A, Arts R, Bernstone C, May F, Thibeau S, Zweigel P (2008) Best practice for the storage of CO2 in saline aquifers. Observations and guidelines from the SACS and CO2STORE projects

  • Churcher PL, Edmunds AC (1994) Reservoir characterization and the geological study of Weyburn unit: PanCanadian internal report

  • CMG (2006) GEM Manual. Calgary CA

  • Dean RH, Gai X, Stone CM, Minkoff SE (2006) A comparison of techniques for coupling porous flow and geomechanics. Spe J 11(01):132–140

    Article  Google Scholar 

  • Duxbury A, White D, Samson C, Hall SA, Wookey J, Kendall J-M (2012) Fracture mapping using seismic amplitude variation with offset and azimuth analysis at the Weyburn CO2 storage site. Geophysics 77(6):B295–B306

    Article  Google Scholar 

  • Engelder T, Fischer MP (1994) Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins. Geology 22(10):949–952

    Article  Google Scholar 

  • Eshiet KI, Sheng Y (2014) Carbon dioxide injection and associated hydraulic fracturing of reservoir formations. Environ Earth Sci 72(4):1011–1024

    Article  Google Scholar 

  • Eyre TS, van der Baan M (2015) Overview of moment-tensor inversion of microseismic events. Lead Edge 34(8):882–888

    Article  Google Scholar 

  • Goertz-Allmann BP, Wiemer S (2012) Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment. Geophysics 78(1):KS25–KS39

    Article  Google Scholar 

  • Gomez JAJ (2006) Geomechanical performance assessment of CO2—EOR geological storage projects. Ph.D. thesis, University of Alberta, Edmonton, AB, Canada

  • Goodman, R. E. (1989). Introduction to rock mechanics (Vol. 2). Wiley New York

  • Gor GY, Elliot TR, Prévost JH (2013) Effects of thermal stresses on caprock integrity during CO2 storage. Int J Greenhouse Gas Control 12:300–309. doi:10.1016/j.ijggc.2012.11.020

    Article  Google Scholar 

  • Guest A, Settari T (2010) Numerical model of microseismicity in hydrofracturing: our prediction for seismic moment tensors. GeoCanada—Working with the Earth

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32(3):163–191

    Google Scholar 

  • Hallo M, Oprsal I, Eisner L, Ali MY (2014) Prediction of magnitude of the largest potentially induced seismic event. J Seismolog 18(3):421–431. doi:10.1007/s10950-014-9417-4

    Article  Google Scholar 

  • Hawkes CD, McLellan PJ, Bachu S (2005) Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Pet Technol 44(10):52–61. doi:10.2118/05-10-05

    Article  Google Scholar 

  • Hazzard JF, Damjanac B (2013) Further investigations of microseismicity in bonded particle models. In: Proceedings of the 3rd International FLAC/DEM Symposium, Hangzhou, China, Itasca Consulting Group, Minneapolis, MN, pp 22–24

  • Hazzard J, Young RP (2002) Moment tensors and micromechanical models. Tectonophysics 356(1):181–197

    Article  Google Scholar 

  • Hazzard J, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41(8):1365–1376

    Article  Google Scholar 

  • Hillis RR (2001) Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Pet Geosci 7(4):419–425. doi:10.1144/petgeo.7.4.419

    Article  Google Scholar 

  • Itasca CG (2010) FLAC3D manual

  • Jaeger JC, Cook NGW, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  • Jafari A, Talman S, Perkins E (2011) Numerical simulation of four-pattern CO2-Flood EOR in the Weyburn Phase 1B area. Alberta Innovates Technology Futures (AITF), Edmonton, Canada

  • Jeanne P, Rutqvist J, Dobson PF, Walters M, Hartline C, Garcia J (2014) The impacts of mechanical stress transfers caused by hydromechanical and thermal processes on fault stability during hydraulic stimulation in a deep geothermal reservoir. Int J Rock Mech Min Sci 72:149–163

    Google Scholar 

  • Kaldi J, Daniel R, Tenthorey E, Michael K, Schacht U, Nicol A, Underschultz J, Backe G (2011) Caprock systems for CO2 geological storage. IAEGHG Rep 1:149

  • Khazaei C (2016) Microseismic response of rock masses for assessment of caprock integrity (Doctoral dissertation). University of Alberta, Edmonton

    Google Scholar 

  • Khazaei C, Hazzard J, Chalaturnyk RJ (2015a) Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling. Comput Geotech. doi:10.1016/j.compgeo.2015.02.012

    Google Scholar 

  • Khazaei C, Hazzard J, Chalaturnyk RJ (2015b) Discrete element modeling of stick-slip instability and induced microseismicity. Pure Appl Geophys. doi:10.1007/s00024-015-1036-7

    Google Scholar 

  • Khazaei C, Hazzard J, Chalaturnyk R (2016) A discrete element model to link the microseismic energies recorded in caprock to geomechanics. Acta Geotech 11(6):1351–1367. doi:10.1007/s11440-016-0489-x

    Article  Google Scholar 

  • Klimkowski Ł, Nagy S, Papiernik B, Orlic B, Kempka T (2015) Numerical simulations of enhanced gas recovery at the Załęcze gas field in Poland confirm high CO2 storage capacity and mechanical integrity. Oil Gas Sci Technol Revue d’IFP Energies Nouvelles 70(4):655–680

    Article  Google Scholar 

  • Le Nindre Y-M, Gaus I (2005) Characterisation of the Lower Watrous Aquitard as a major seal for CO2 geological sequestration, (Weyburn Unit, Canada). In: Proceedings of the 7th international conference on greenhouse gas control technologies

  • Li Z, Dong M, Li S, Huang S (2006) CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers Manag 47(11):1372–1382

    Article  Google Scholar 

  • Longuemare P, Mainguy M, Lemonnier P, Onaisi A, Gérard C, Koutsabeloulis N (2002) Geomechanics in reservoir simulation: overview of coupling methods and field case study. Oil Gas Sci Technol 57(5):471–483

    Article  Google Scholar 

  • Lorenz JC, Teufel LW, Warpinski NR (1991) Regional fractures I: a mechanism for the formation of regional fractures at depth in flat-lying reservoirs (1). AAPG Bull 75(11):1714–1737

    Google Scholar 

  • Magri F, Tillner E, Wang W, Watanabe N, Zimmermann G, Kempka T (2013) 3D hydro-mechanical scenario analysis to evaluate changes of the recent stress field as a result of geological CO2 storage. Energy Proc 40:375–383

    Article  Google Scholar 

  • Marsden R (2007) Geomechanics for reservoir management. In: Algeria well evaluation conference, p 398

  • Martens S, Group K (2013) CO2 storage at the Ketzin pilot site, Germany: fourth year of injection, monitoring, modelling and verification. Energy Proc 37:6434–6443. doi:10.1016/j.egypro.2013.06.573

    Article  Google Scholar 

  • Martens S, Kühn M (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67(2):323–334

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, vol 31. Elsevier, Amsterdam, pp 643–659

  • Maxwell S (2010) Microseismic: growth born from success. Lead Edge 29(3):338–343

    Article  Google Scholar 

  • Maxwell SC, White DJ, Fabriol HC (2004) Passive seismic imaging of CO2 sequestration at Weyburn. In: 2004 SEG annual meeting

  • McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119(2):1008–1019. doi:10.1002/2013JB010597

    Article  Google Scholar 

  • Minkoff SE, Stone CM, Arguello JG, Bryant S, Eaton J, Peszynska M, Wheeler M (2013) Staggered in time coupling of reservoir flow simulation and geomechanical deformation: step 1—one-way coupling. In: SPE reservoir simulation symposium. Society of Petroleum Engineers. doi: 10.2118/51920-MS

  • Moghadam AA, Chalaturnyk R (2015) Laboratory investigation of shale permeability. In: SPE/CSUR unconventional resources conference. Society of Petroleum Engineers. doi: 10.2118/175919-MS

  • Mora P, Place D (1994) Simulation of the frictional stick-slip instability. Pure Appl Geophys 143(1–3):61–87

    Article  Google Scholar 

  • Moreno FJ, Chalaturnyk R, Jimenez J (2005) Methodology for assessing integrity of bounding seals (Wells and Caprock) for geological storage of CO2. In: Proceedings of the 7th international conference on greenhouse gas control technologies

  • Orlic B, Wassing BBT (2013) A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks. Rock Mech Rock Eng 46(3):421–435

    Article  Google Scholar 

  • Perkins TK, Gonzalez JA (1985) The effect of thermoelastic stresses on injection well fracturing. Soc Pet Eng J 25(01):78–88

    Article  Google Scholar 

  • Riddiford F, Wright I, Bishop C, Espie T, Tourqui A (2004) Monitoring geological storage: the In Salah gas CO2 storage project. In: Proceedings of the 7th international conference on greenhouse gas control technologies, vol 2, pp 1353–1359

  • Ringrose PS, Mathieson AS, Wright IW, Selama F, Hansen O, Bissell R, Saoula N, Midgley J (2013) The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy Proc 37:6226–6236. doi:10.1016/j.egypro.2013.06.551

    Article  Google Scholar 

  • Röhmann L, Tillner E, Magri F, Kühn M, Kempka T (2013) Fault reactivation and ground surface uplift assessment at a prospective German CO2 storage site. Energy Proc 40:437–446

    Article  Google Scholar 

  • Rutqvist J, Birkholzer JT, Tsang C-F (2008) Coupled reservoir—geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir—caprock systems. Int J Rock Mech Min Sci 45(2):132–143

    Article  Google Scholar 

  • Rutqvist J, Moridis GS, Kim J, Reagan MT (2011) Geomechanical performance analysis of potential long-term tests of gas production from hydrate deposits in North Slope, Alaska. In: OTC Arctic technology conference. Offshore technology conference

  • Saeedi A (2012) Experimental study of multiphase flow in porous media during CO2 geo-sequestration processes. Springer, New York

    Book  Google Scholar 

  • Schilling f, Borm G, Würdemann H, Möller F, Kühn M, Group CS (2009) Status report on the first European on-shore CO2 storage site at Ketzin (Germany). Energy Proc 1(1):2029–2035

    Article  Google Scholar 

  • Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289(1–3):117–128. doi:10.1016/S0040-1951(97)00311-9

    Article  Google Scholar 

  • Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J Geophys Res Solid Earth 100(B11):22155–22171. doi:10.1029/95JB02403

    Article  Google Scholar 

  • Settari A, Mourits FM (1994) Coupling of geomechanics and reservoir simulation models. Comput Methods Adv Geomech 3:2151–2158

    Google Scholar 

  • Settari A, Walters DA (2001) Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Spe J 6(03):334–342

    Article  Google Scholar 

  • Sibson RH (2003) Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull 87(6):901–908

    Article  Google Scholar 

  • Smart KJ, Ofoegbu GI, Morris AP, McGinnis RN, Ferrill DA (2014) Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter. AAPG Bull 98(11):2237–2261

    Article  Google Scholar 

  • Soltanzadeh H (2009) Geomechanical analysis of caprock integrity. Dissertation, University of Saskatchewan, Canada

  • Surdam RC (2013) Geological CO2 storage characterization: the key to deploying clean fossil energy technology. Springer, New York

    Book  Google Scholar 

  • Teufel LW, Rhett DW, Farrell HE (1991) Effect of reservoir depletion and pore pressure drawdown on in situ stress and deformation in the Ekofisk field, North Sea. In: The 32nd US symposium on rock mechanics (USRMS). American Rock Mechanics Association

  • Verdon JP (2010) Microseismic monitoring and geomechanical modelling of CO2 storage in subsurface reservoirs. University of Bristol, Bristol

    Google Scholar 

  • Verdon JP (2016) Using microseismic data recorded at the Weyburn CCS-EOR site to assess the likelihood of induced seismic activity. Int J Greenh Gas Control 54:421–428. doi:10.1016/j.ijggc.2016.03.018

    Article  Google Scholar 

  • Verdon JP, Kendall J-M, White DJ, Angus DA (2011) Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations. Earth Planet Sci Lett 305(1):143–152

    Article  Google Scholar 

  • Verdon JP, Jones B, Kendall J (2012) Microseismic monitoring and geomechanical deformation during CO2 injection at weyburn. Department of Earth Sciences, University of Bristol, United Kingdom

  • Verdon JP, Kendall J-M, Stork AL, Chadwick RA, White DJ, Bissell RC (2013) Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc Natl Acad Sci USA 110(30):E2762–E2771. doi:10.1073/pnas.1302156110

    Article  Google Scholar 

  • Verdon JP, Stork AL, Bissell RC, Bond CE, Werner MJ (2015) Simulation of seismic events induced by CO2 injection at In Salah, Algeria. Earth Planet Sci Lett 426:118–129

    Article  Google Scholar 

  • Vidal-Gilbert S, Nauroy J-F, Brosse E (2009) 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. Int J Greenhouse Gas Control 3(3):288–299. doi:10.1016/j.ijggc.2008.10.004

    Article  Google Scholar 

  • Vilarrasa V, Laloui L (2016) Impacts of thermally induced stresses on fracture stability during geological storage of CO2. Energy Proc 86:411–419

    Article  Google Scholar 

  • Vilarrasa V, Rutqvist J (2016) Thermal effects on geologic carbon storage. Earth Sci Rev. doi:10.1016/j.earscirev.2016.12.011

    Google Scholar 

  • Vilarrasa V, Olivella S, Carrera J, Rutqvist J (2014) Long term impacts of cold CO2 injection on the caprock integrity. Int J Greenhouse Gas Control 24:1–13. doi:10.1016/j.ijggc.2014.02.016

    Article  Google Scholar 

  • WEBLEX Canada (2016) Natural Resources Canada, Ottawa, ON. Government of Canada. Retrieved April 4 2016 from http://weblex.nrcan.gc.ca/html/016000/GSCC00053016133.html

  • Wegelin A (1984) Geology and reservoir properties of the Weyburn field, Southeastern Saskatchewan, 71–82. Retrieved from http://archives.datapages.com/data/sgs/1984/071/071.htm

  • White D (2013) Seismic characterization and time-lapse imaging during 7 years of CO2 flood in the Weyburn field, Saskatchewan, Canada. Int J Greenhouse Gas Control 16:S78–S94. doi:10.1016/j.ijggc.2013.02.006

    Article  Google Scholar 

  • White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y, Ramirez A, McNab W (2014) Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project. Proc Natl Acad Sci 111(24):8747–8752

    Article  Google Scholar 

  • Whittaker S, Rostron B, Hawkes C, Gardner C, White D, Johnson J, Chalaturnyk R, Seeburger D (2011) A decade of CO2 injection into depleting oil fields: monitoring and research activities of the IEA GHG Weyburn-Midale CO2 monitoring and storage project. Energy Proc 4:6069–6076

    Article  Google Scholar 

  • Wilson M, Monea M (eds) (2004) Leaghg Weyburn CO2 monitoring & storage project summary report 2000–2004

  • Yale DP, Lyons SL, Qin G (2000) Coupled geomechanics-fluid flow modeling in petroleum reservoirs: coupled versus uncoupled response. In: 4th North American Rock mechanics symposium. American Rock Mechanics Association

  • Zhang Y, Langhi L, Schaubs PM, Piane CD, Dewhurst DN, Stalker L, Michael K (2015) Geomechanical stability of CO2 containment at the South West Hub Western Australia: a coupled geomechanical–fluid flow modelling approach. Int J Greenhouse Gas Control 37:12–23. doi:10.1016/j.ijggc.2015.03.003

    Article  Google Scholar 

  • Zhao G, Tian S (2003) CO2 flooding performance monitoring and forecasting in the Weyburn oil field. Report submitted to Petroleum Research Technology Center (PTRC) Research

  • Zhou W, Stenhouse MJ, Arthur R, Whittaker S, Law DHS, Chalaturnyk R, Jazrawi W (2004) The IEA Weyburn CO2 monitoring and storage project—modeling of the long-term migration of CO2 from Weyburn. In: Proceedings of the 7th international conference on greenhouse gas control technologies (GHGT-7), pp 721–730

  • Zweigel P, Heill LK (2003) Studies on the likelihood for caprock fracturing in the Sleipner CO2 injection case. Saline Aquifer CO2 storage project

Download references

Acknowledgements

We are grateful to Alireza Jafari and Stephan Talman from Alberta Innovates Technology Futures (AITF) for providing us with their GEM model. We would like to thank Don White, Neil Wildgust, Joseph Laszlo and Norm Sacuta from PTRC for providing us with the Weyburn dataset. The help by Dr. Joe Cheng from Itasca with FLAC3D features is gratefully acknowledged. The constructive comments by Dr. Jim Hazzard and three anonymous reviewers on the paper are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Khazaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaei, C., Chalaturnyk, R. A Reservoir–Geomechanical Model to Study the Likelihood of Tensile and Shear Failure in the Caprock of Weyburn CCS Project with Regard to Interpretation of Microseismic Data. Geotech Geol Eng 35, 2571–2595 (2017). https://doi.org/10.1007/s10706-017-0262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-017-0262-4

Keywords

Navigation