Skip to main content
Log in

Prediction of Blast-Induced Flyrock in Opencast Mines Using ANN and ANFIS

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The aim of present study is prediction of blast-induced flyrock distance in opencast limestone mines using artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). Blast design and geotechnical variables such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength, and rock quality designation have been selected as independent variables and flyrock distance has been used as dependent variable. Blasts required for the study purpose have been conducted in four limestone mines in India. Out of one hundred and twenty-five (125) blasts, dataset of one hundred blasts have been used for training, testing and validation of the ANN and ANFIS based prediction model. Twenty-five (25) data have been used for evaluation of the trained ANN and ANFIS models. In order to know the relationship among the independent and dependent variables, multi-variable regression analysis (MVRA) has also been performed. The performance indices such as root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) have been evaluated for ANN, ANFIS and MVRA. RMSE as well as MAE have been found lower and R2 has been found higher in case of ANFIS in comparison of ANN and MVRA. ANFIS has been found a superior predictive technique in comparison to ANN and MVRA. Sensitivity analysis has also been performed using ANFIS to assess the impact of independent variables on flyrock distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Acaroglu O, Ozdemir L, Asbury B (2008) A fuzzy logic model to predict specific energy requirement for TBM performance prediction. Tunn Undergr Space Technol 23:600–608. doi:10.1016/j.tust.2007.11.003

    Article  Google Scholar 

  • Adhikari GR (1999) Studies on flyrock at limestone quarries. Rock Mech Rock Eng 32(4):291–301

    Article  Google Scholar 

  • Alipour A, Ashtiani M (2011) Fuzzy modeling approaches for the prediction of maximum charge per delay in surface mining. Int J Rock Mech Min Sci 48:306–310. doi:10.1016/j.ijrmms.2010.11.010

    Article  Google Scholar 

  • Azimi Y, Osanloo M, Aakbarpour M, Bazzazi AA (2010) Prediction of the blastability designation of rock masses using fuzzy sets. Int J Rock Mech Min Sci 47:1126–1140. doi:10.1016/j.ijrmms.2010.06.016

    Article  Google Scholar 

  • Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK (2000) A summary of fatal accidents due to flyrock and lack of blast area security in surface mining, 1989–1999. In: Proceedings of 28th annual conference on explosives and blasting technique. International Society of Explosives Engineers, 10–13 Feb 2000, NIOSH, Las Vegas, Nevada, pp 105–188

  • Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK (2004) Blasting injuries in surface mining with emphasis on flyrock and blast area security. J Saf Res 35:47–57. doi:10.1016/j.jsr.2003.07.003

    Article  Google Scholar 

  • Bezdek J (1974) Cluster validity with fuzzy sets. J Cybern 3(3):58–71. doi:10.1080/01969727308546047

    Article  Google Scholar 

  • Bezdek J, Hathaway R, Sabin M, Tucker W (1987) Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Trans Syst Man Cybern 17:873–877

    Article  Google Scholar 

  • Bhandari S (1997) Engineering rock blasting operations. Balkema, Rotterdam

    Google Scholar 

  • CSIR-CIMFR (2014) Prediction and control of flyrock hazards due to blasting in opencast mines using artificial neural network. Interim report, Grant in Aid Project (GAP/87/EMG/DST/2010-11) Central Institute of Mining and Fuel Research, Dhanbad, India

  • Cabalar AF, Cevik A, Gokceoglu C (2012) Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering. Comput Geotech 40:14–33. doi:10.1016/j.compgeo.2011.09.008

    Article  Google Scholar 

  • Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):827–841

    Google Scholar 

  • Chuang PH (1995) Use of fuzzy sets for evaluating shear strength of soils. Comput Geotech 17:425–446. doi:10.1016/0266-352X(95)94914-C

    Article  Google Scholar 

  • Den Hartog MH, Babuska R, Deketh HJR, Grima MA, Verhoef PNW, Verbruggen HB (1997) Knowledge-based fuzzy model for performance prediction of a rock-cutting trencher. Int J Approx Reason 16(1):43–66. doi:10.1016/S0888-613X(96)00118-1

    Article  Google Scholar 

  • Dunn J (1974) A fuzzy relative of the isodata process and its use in detecting compact well separated cluster. J Cybern 3(3):32–57. doi:10.1080/01969727308546046

    Article  Google Scholar 

  • Esmaeili M, Osanloo M, Rashidinejad F, Bazzazi AA, Tazi M (2014) Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng Comput 30:549–558. doi:10.1007/s00366-012-0298-2

    Article  Google Scholar 

  • Fletcher LR, D’Andrea DV (1986) Control of flyrock in blasting. In: Proceedings of the 12th conference on explosives & Blasting Tech Atlanta, Georgia, 2/9-14/86

  • Gokceoglu C, Zorlu K (2004) Fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72. doi:10.1016/j.engappai.2003.11.006

    Article  Google Scholar 

  • Grima M, Babuska R (1999) Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int J Rock Mech Min Sci 36:339–349. doi:10.1016/S0148-9062(99)00007-8

    Article  Google Scholar 

  • Hagan TN (1979) Rock breakage by explosives. Acta Astronaut 6(3–4):329–340. doi: 10.1016/0094-5765(79)90102-4

  • Iphar M, Yavuz M, Ak H (2008) Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environ Geol 56:97–107. doi:10.1007/s00254-007-1143-6

    Article  Google Scholar 

  • Jiang YM, Park DW, Deb D, Sanford R (1997) Application of fuzzy set theory in the evaluation of roof categories in longwall mining. Min Eng 49(3):53–57

    Google Scholar 

  • Kecojevic V, Radomsky M (2005) Flyrock phenomena and area security in blasting-related accidents. Saf Sci 43:739–750. doi:10.1016/j.ssci.2005.07.006

    Article  Google Scholar 

  • Khandelwal M, Monjezi M (2013) Prediction of flyrock in open pit blasting operation using machine learning method. Int J Min Sci Technol 23(3):313–316. doi:10.1016/j.jrmge.2014.07.003

    Article  Google Scholar 

  • Little TN, Blair DP (2009) Mechanistic Monte Carlo models for analysis of flyrock risk. In: Proceedings of the 9th international symposium on rock fragmentation by blasting, Granada, Spain, pp 641–647

  • Lundborg N (1974) The hazards of fly rock in rock blasting. Swedish Detonic Research Foundation, Report DS 13, Stockholm

  • Monjezi M, Bahrami A, Yazdian V (2010a) A simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int J Rock Mech Min Sci 47:476–480

    Article  Google Scholar 

  • Monjezi M, Rezaei M, Yazdian A (2010b) Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Syst Appl 37:2637–2643. doi:10.1016/j.eswa.2009.08.014

    Article  Google Scholar 

  • Mostafa MT (2011) Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. Int J Rock Mech Min Sci 48:845–851. doi:10.1016/j.ijrmms.2011.04.016

    Article  Google Scholar 

  • Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16:149–169. doi:10.1016/S0933-3657(98)00070-0

    Article  Google Scholar 

  • Pena-Reyes CA, Siper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17:131–155. doi:10.1016/S0933-3657(99)00019-6

    Article  Google Scholar 

  • Persson P, Holmberg R, Lee J (1984) Rock blasting and explosives engineering. CRC Press, New York

    Google Scholar 

  • Raina AK, Chakraborty AK, Choudhury PB, Siha A (2011) Flyrock danger zone demarcation in opencast mines: a risk based approach. Bull Eng Geol Environ 70:163–172. doi:10.1007/s10064-010-0298-7

    Article  Google Scholar 

  • Rehak TR, Bajpayee TS, Mowrey GL, Ingram DK (2001) Flyrock issues in blasting. In: Proceedings of the 27th annual conference on explosives and blasting technique. vol 1. International Society of Explosives Engineers, Cleveland, pp 165–175

  • Remennikov AM, Mendis PA (2006) Prediction of airblast loads in complex environments using artificial neural networks. WIT Trans Built Environ 87:269–278. doi:10.2495/978-1-84564-750-6/06

    Google Scholar 

  • Richards AB, Moore AJ (2004) Flyrock control—by chance or design. In: Proceedings of 30th annual conference on explosives and blasting technique. International Society of Explosive Engineers

  • Roth JA (1979) A model for the determination of flyrock range as a function of shot condition. (Los Altos, CA: Management Science Associates. USBM contract J0387242)

  • Singh TN, Singh V (2005) An intelligent approach to predict and control ground vibration in mines. Geotech Geol Eng 23:249–262. doi:10.1007/s10706-004-7068-x

    Article  Google Scholar 

  • Singh DP, Singh TN, Goyal M (1994) Ground vibration due to blasting and its effect. In: Pradhan GK, Hota JK (eds) Enviromin. Bhubaneshwar, India, pp 287–293

    Google Scholar 

  • Singh R, Vishal V, Singh T, Ranjith P (2013) A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural Comput Appl 23(2):499–506. doi:10.1007/s00521-012-0944-z

    Article  Google Scholar 

  • Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of noslump concrete: a comparative study of regression, neural network and ANFIS models. Constr Build Mater 24:709–718. doi:10.1016/j.conbuildmat.2009.10.037

    Article  Google Scholar 

  • Tawadrous AS, Katsabanis PD (2005) Prediction of surface blast patterns in limestone quarries using artificial neural networks. Int J Bl Fragm 10:233–242. doi:10.1080/13855140600979531

    Google Scholar 

  • Trivedi R, Singh TN, Mudgal K (2014) Impact of geotechnical parameters on blast induced flyrocks using artificial neural network—a case study. In: Proceedings of 2nd international conference on advanced technology in exploration and exploitation of minerals, advance Minetech. Jodhpur, India, pp 128–134

  • Verakis HC, Lobb TE (2003) An analysis of blasting accidents in mining operations. In: Proceedings of the 29th annual conference on explosives and blasting technique, 2 Cleveland, OH: International Society of Explosives Engineers, pp 119–129

  • Wiss JF, Linehan PW (1978) Control of vibration and air noise from surface coal mines—III. USBM Report No: OFR 103 (3)—79

  • Workman JL, Calder PN (1994) Flyrock prediction and control in surface mine blasting. In: Proceedings of 20th annual conference on explosives and blasting technique, Austin, Texas, Cleveland, OH: International Society of Explosives Engineers, pp 59–74

  • Yesiloglu-Gultekin N, Sezer E, Gokceoglu C, Bayhan H (2012) An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Syst Appl 40(3):921–928. doi:10.1016/j.eswa.2012.05.048

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Trivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, R., Singh, T.N. & Gupta, N. Prediction of Blast-Induced Flyrock in Opencast Mines Using ANN and ANFIS. Geotech Geol Eng 33, 875–891 (2015). https://doi.org/10.1007/s10706-015-9869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-015-9869-5

Keywords

Navigation