Skip to main content

Advertisement

Log in

Soybean yield and nutrition after tropical forage grasses

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

In tropical agroecosystems, intercropping crops and including perennial forages can increase crop system diversity and sustainability. However, adequate management of cash crops in crop rotation under no-till requires an understanding of the release of nutrients by surface mulch. This study evaluated the effects of two sowing times and nitrogen (N) management of palisade grass [Urochloa brizantha (A. Rich.) Stapf Marandu] and guinea grass [Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs Tanzania] on forage production, nutrient accumulation, and decomposition rates; soybean [Glycine max (L.) Merrill] yield; and soil chemical properties over three growing seasons. Palisade and guinea grasses were sown for intercropping with sorghum [Sorghum bicolor (L.) Moench] in the growing season or after sorghum silage harvest (hereafter succession) and subjected to N fertilization management (urea − 0 and 70 kg N ha−1 cut−1, totalling 210 kg N ha−1 per season) during the off-season. Nitrogen fertilization increased nutrient accumulation in surface mulch in all cropping systems. Regardless of cropping system, N rates, or growing season, palisade and guinea grass provided an adequate plant biomass production, soil cover throughout the year, soybean nutrient use efficiency, and soil quality. Soybean was positively influenced by N fertilization of grasses sown in succession to sorghum. Guinea grass had the greatest effect on soybean grain yield, with an improvement of 0.8 Mg ha−1. Sowing grasses in succession to sorghum positively affected soil pH, Ca, Mg, and base saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Serntelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Ambrosano EJ, Tanaka RT,Mascarenhas HAA, van Raij B, Quaggio JA, Cantarella H (1996) Leguminosas e oleaginosas. In: Recomendações de adubação e calagem para o Estado de São Paulo, 2nd ed. Bol. Tec. 100. Inst. Eds van Raij B, Quaggio JA, Cantarella H. (In Portuguese) (Campinas, SP, Brazil: Agronômico) (IAC) 187–202

  • Anghinoni I (2007) Fertilidade do solo e seu manejo em sistema plantio direto. In: Novais RFV, Alvares VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editor. Fertilidade do solo. (In Portuguese). Viçosa: SBCS. p 873–928

  • Assmann JM, Anghinoni I, Martins AP, Costa SEVGA, Cecagno D, Carlos FS, Carvalho PCF (2014) Soil carbon and nitrogen stocks and fractions in a long-term integrated crop-livestock system under no-tillage in southern Brazil. Agric Ecosyst Environ 190:52–59. https://doi.org/10.1016/j.agee.2013.12.003

    Article  CAS  Google Scholar 

  • Barducci RS, Costa C, Crusciol CAC, Borghi E, Putarov TC, Sarti LMN (2009) Production of brachiaria brizantha and panicum maximum with corn and nitrogen fertilization. (In Portuguese, with English abstract). Arch Zootec 58:211–222

    Article  Google Scholar 

  • Balbinot Junior AA, Moraes AD, Veiga MD, Pelissari A, Dieckow J (2009) Crop livestock system: intensified use of agricultural lands. Ciência Rural. 39, 1925–1933. In Portuguese, with English abstract

  • Baldé AB, Scopel E, Affholder F, Corbeels M, Silva FAM, Xavier JHV, Wery J (2011) Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in central Brazil. Field Crops Res 124:240–251. https://doi.org/10.1016/j.fcr.2011.06.017

    Article  Google Scholar 

  • Baptistella JLC, Andrade SAL, Favarin JL, Mazzafera P (2020) Urochloa in tropical agroecosystems. Front Sustain Food Syst 4:119. https://doi.org/10.3389/fsufs.2020.00119

    Article  Google Scholar 

  • Barth Neto A, Savian JV, Schons RMT, Bonnet OJF, Canto MW, Moraes A, Lemaire G, Carvalho PCF (2014) Italian ryegrass establishment by self-seeding in integrated crop-livestock systems: effects of grazing management and crop rotation strategies. Eur J Agron 53:67–73. https://doi.org/10.1016/j.eja.2013.11.001

    Article  Google Scholar 

  • Bayer C, Mielniczuk J, Amado TJC, Martinneto L, Fernandes SV (2000) Organic matter storage in a sandy clay loam Acrisol affected by tillage a cropping systems in southern Brazil. Soil till Res 54:101–109

    Article  Google Scholar 

  • Bieluczyk W, Piccolo MC, Pereira MG, Moraes MT, Soltangheisi A, Bernardi AC, Pezzopan JRM, Oliveira PPA, Moreira MZ, Camargo PB, Dias CT, Batista I, Cherubin MR (2020) Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma 371:114368. https://doi.org/10.1016/j.geoderma.2020.114368

    Article  CAS  Google Scholar 

  • Bossolani JW, Crusciol CAC, Merloti LF, Moretti LG, Costa NR, Tsai SM, Kuramae EE (2020) Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 375:114476. https://doi.org/10.1016/j.geoderma.2020.114476

    Article  CAS  Google Scholar 

  • Bowles TM, Mooshammer M, Socolar Y, Calderón F, Cavigelli MA, Culman SW, Deen W, Drury CF, Garcia y Garcia A, Gaudin ACM, Harkcom WS, Lehman RM, Osborne SL, Robertson GP, Salerno J, Schmer MR, Strock J, Grandy AS (2020) Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2:284–293. https://doi.org/10.1016/j.oneear.2020.02.007

    Article  Google Scholar 

  • Calonego JC, Raphael JPA, Rigon JPG, Oliveira Neto L, Rosolem CA (2017) Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur J Agron 85:31–37. https://doi.org/10.1016/j.eja.2017.02.001

    Article  Google Scholar 

  • Cantarella H, van Raij B, Camargo CEO (1997) Cereais. In: Boletim Técnico 100, Recomendação de Adubação e Calagempara o Estado de São Paulo, 2nd Edn, eds B. van Raij, H. Cantarella, J. A. Quaggio, and A. M. C. Furlani (Instituto Agronômico Campinas), 43–71. (In Portuguese)

  • Carvalho PCF, Anghinoni I, Moraes A, Souza ED, Sulc RM, Lang CR, Flores JPC, Lopes MLT, Silva JLS, Conte O, Wesp CL, Levien R, Fontaneli RS, Bayer C (2010) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr Cycl Agroecosyst 88:259–273

    Article  Google Scholar 

  • Carvalho WP, Carvalho GJ, Abbade Neto DO, Teixeira LGV (2013) Agronomic performance of cover crops used as ground cover mulching in the fallow period. (In Portuguese, with English abstract.) Pesq Agropec Bras. 48: 157–166.

  • Costa KAP, Rosa B, Oliveira IP, Custódio DP, Silva DC (2005) Effect of seasonal climate condition on the dry matter production and bromatological composition of Brachiaria brizantha cv. Marandu Ci Anim Bras 6:187–193

    Google Scholar 

  • Costa NR, Andreotti M, Buzetti S, Lopes KSM, Santos FG, Pariz CM (2014) Macronutrient accumulation and decomposition of brachiaria species as a function of nitrogen fertilization during and after intercropping with corn. (In Portuguese, with English abstract.) Rev Bras Ci Solo. 38: 1223–1233. https://doi.org/10.1590/S0100-06832014000400019

  • Costa NR, Andreotti M, Lopes KSM, Yokobatake KLA, Ferreira JP, Pariz CM. Bonini CSB, Longhini VZ (2015) Soil Properties and Carbon Accumulation in an Integrated Crop-Livestock System under No-Tillage. (In Portuguese, with English abstract.) Rev Bras Ci Solo. 39:852–863, 2015. https://doi.org/10.1590/01000683rbcs20140269

  • Costa NR, Andreotti M, Crusciol CAC, Pariz CM, Lopes KSM, Kazuo LAY, Ferreira JP, Lima CGR, Souza DM (2016a) Effect of intercropped tropical perennial grasses on the production of sorghum-based silage. Agron J 108:2379–2390. https://doi.org/10.2134/agronj2016.07.0385

    Article  Google Scholar 

  • Costa CHM, Crusciol CAC, Soratto RP, Ferrari Neto J, Moro E (2016b) Nitrogen fertilization on palisadegrass: phytomass decomposition and nutrients release. Pesq Agropec Trop 46:159–168

    Article  Google Scholar 

  • Costa CHM, Crusciol CAC, Soratto RP, Ferrari Neto J (2016c) Phytomass decomposition and nutrients release from pearl millet, guinea grass and palisade grass. Biosci J 32:1191–1203

    Article  Google Scholar 

  • Costa NR, Andreotti M, Crusciol CAC, Pariz CM, Bossolani JW, Castilhos AM, Nascimento CAC, Lima CGR, Bonini CSB, Kuramae EE (2020) Can palisade and guinea grass sowing time in intercropping systems affect soybean yield and soil chemical properties? Front Sustain Food Syst 4:1–10. https://doi.org/10.3389/fsufs.2020.00081

    Article  CAS  Google Scholar 

  • Costa NR, Crusciol CAC, Trivelin PCO, Pariz CM, Costa C, Castilhos AM, Souza DM, Bossolani JW, Andreotti M, Meirelles PRL, Moretti LG, Mariano E (2021) Recovery of 15N fertilizer in intercropped maize, grass and legume and residual effect in black oat under tropical conditions. Agr Ecosyst Environ 310:107226. https://doi.org/10.1016/j.agee.2020.107226

    Article  CAS  Google Scholar 

  • Crusciol CAC, Nascente AS, Borghi E, Soratto RP, Martins PO (2015) Improving soil fertility and crop yield in a tropical region with palisadegrass cover crops. Agron J 107:2271–2280. https://doi.org/10.2134/agronj14.0603

    Article  CAS  Google Scholar 

  • Crusciol CAC, Portugal JR, Momesso L, Bossolani JW, Pariz CM, Castilhos AM, Costa NR, Costa CHM, Costa C, Franzluebbers AJ, Cantarella H (2020) Overcoming competition from intercropped forages on upland rice with optimized nitrogen input to food production in Tropical Region. Front Sustain Food Syst 4:129. https://doi.org/10.3389/fsufs.2020.00129

    Article  Google Scholar 

  • Crusciol CAC, Momesso L, Portugal JR, Costa CHM, Bossolani JW, Costa NR, Pariz CM, Castilhos AM, Rodrigues VA, Costa C, Franzluebbers AJ, Cantarella H (2021) Upland rice intercropped with forage grasses in an integrated crop-livestock system: optimizing nitrogen management and food production. Field Crop Res 261:108008. https://doi.org/10.1016/j.fcr.2020.108008

    Article  Google Scholar 

  • Deiss L, Kleina GB, Moraes A, Franzluebbers AJ, Motta ACV, Dieckow J, Sandini IE, Anghinoni I, Carvalho PCF (2019) Soil chemical properties under no-tillage as affected by agricultural trophic complexity. Eur J Soil Sci. https://doi.org/10.1111/ejss.12869

    Article  Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270–274. https://doi.org/10.1126/science.aaz5192

    Article  CAS  PubMed  Google Scholar 

  • Dubeux Júnior JCB, Sollenberger LE, Vendramini JMB, Interrante SM, Lira MA (2014) Stocking method, animal behavior, and soil nutrient redistribution: how are they linked? Crop Sci 54:2341–2350. https://doi.org/10.2135/cropci2014.01.0076

    Article  Google Scholar 

  • FAO –Food and Agriculture Organization of the United Nations (2010) An International Consultation on Integrated Crop-livestock Systems for Development: the Way Forward for Sustainable Production Intensification. 64p. (IntegratedvCrop Management, v.13).

  • FAO – Food and Agriculture Organization of the United Nations (2017) Integrated Crop- Livestock Systems (ICLS). Available at: http://www.fao.org/agriculture/crops/core-themes/theme/spi/scpi-home/managing-ecosystems/integrated-crop-livestocksystems/en/. Accessed 01 Nov 2020

  • Fehr WR, Caviness CE (1977) Stages of Soybean development. Iowa State University, Ames

    Google Scholar 

  • Franzluebbers AJ, Stuedemann JA (2014) Crop and cattle production responses to tillage and cover crop management in an integrated crop–livestock system in the southeastern USA. Eur J Agron 57:62–70. https://doi.org/10.1017/S1742170507001706

    Article  Google Scholar 

  • Franzluebbers AJ, Gastal F (2019) Building agricultural resilience with conservation pasture-crop rotations. Agroecosyst Divers Reconcil Contemp Agricult Environ Qual 109–121. https://doi.org/10.1016/B978-0-12-811050-8.00007-8

  • Garland G, Bünemann EK, Oberson A, Frossard E, Six J (2016) Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant Soil 415:37–55. https://doi.org/10.1007/s11104-016-3145-1

    Article  CAS  Google Scholar 

  • Holland JA, Bennett A, Newton B, McKenzie P, White T, George R, Pakeman JS, Bailey DA, Fornara RH (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci Total Environ 610:316–332. https://doi.org/10.1016/j.scitotenv.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  • Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40:5. https://doi.org/10.1007/s13593-020-0607-x

    Article  Google Scholar 

  • Janusckiewicz ER, Chiarelli CB, Neto DCC, Raposo E, Ruggieri AC (2015) How the intercropping between corn and palisade grass cultivars affects forage production and pastures characteristics under grazing. Am J Plant Sci 6:1475–1482. https://doi.org/10.4236/ajps.2015.69146

    Article  Google Scholar 

  • Kliemann HJ, Braz AJBP, Silveira PM (2006) Decomposition rates of cover crop residues on a Dystrophic Oxisol. (In Portuguese, with English abstract.) Pesq Agropec Trop. 36: 21–28.

  • Lemaire G, Franzluebbers AJ, Carvalho PCF, Dedieu B (2014) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190:4–8. https://doi.org/10.1016/j.agee.2013.08.00910.1016/j.agee.2013.08.009

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira AS (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. (In Portuguese). Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato.

  • Mateus GP, Crusciol CAC, Pariz CM, Borghi E, Costa C, Martello JM, Franzluebbers AJ, Castilhos AM (2016) Sidedress nitrogen application rates to sorghum intercropped with tropical perennial grasses. Agron J 108:433–447

    Article  CAS  Google Scholar 

  • Mateus GP, Crusciol CAC, Pariz CM, Costa NR, Borghi E, Costa C, Martello JM, Castilhos AM, Franzluebbers AJ, Cantarella H (2020) Corn intercropped with tropical perennial grasses as affected by sidedress nitrogen application rates. Nutr Cycl Agroecosyst 1:1–22. https://doi.org/10.1007/s10705-019-10040-1

    Article  CAS  Google Scholar 

  • Momesso L, Crusciol CAC, Soratto RP, Vyn TJ, Tanaka KS, Costa CHM, Ferrari Neto J, Cantarella H (2019) Impacts of nitrogen management on no-till maize production following forage cover crops. Agron J 111:639–649. https://doi.org/10.2134/agronj2018.03.0201

    Article  CAS  Google Scholar 

  • Moraes A, Carvalho PCF, Crusciol CAC, Lang CR, Pariz CM, Deiss L, Sulc RM (2019) Integrated crop-livestock systems as a solution facing the destruction of pampa and cerrado biomes in South America by intensive monoculture systems. Agroecosyst Divers Reconcil Contemp Agricult Environ Qual 257–273. https://doi.org/10.1016/B978-0-12-811050-8.00016-9

  • Nascente AS, Stone LF, Crusciol CAC (2015) Soil chemical properties affected by cover crops under no-tillage system. Rev Ceres 62:401–409

    Article  CAS  Google Scholar 

  • Nunes PAA, Laca EA, Carvalho PCF, Li M, Souza Filho W, Kunrath TR, Martins AP, Gaudin A (2021) Livestock integration into soybean systems improves long-term system stability and profts without compromising crop yields. Sci Rep 11:1649. https://doi.org/10.1038/s41598-021-81270-z

    Article  CAS  Google Scholar 

  • Pariz CM, Andreotti M, Buzetti S, Bergamaschine AF, Ulian NA, Furlan LC, Meirelles PRL, Cavasano FA (2011) Straw decomposition of nitrogen-fertilized grasses intercropped with irrigated maize in an integrated crop livestock system. Rev Bras Ci Solo 35:2029–2037

    Article  CAS  Google Scholar 

  • Pariz CM, Costa C, Crusciol CAC, Meirelles PRL, Castilhos AM, Andreotti M, Costa NR, Martello JM, Souza DM, Protes VM, Longhini VZ, Franzluebbers AJ (2017) Production, nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean. Nutr Cycl Agroecosyst 108:35–54. https://doi.org/10.1007/s10705-016-9821-y

    Article  CAS  Google Scholar 

  • Pariz CM, Costa NR, Costa C, Crusciol CAC, Castilhos AM, Meirelles PRL, Calonego JC, Andreotti M, Souza DM, Cruz IV, Longhini VZ, Protes VM, Sarto JRW, Piza MLST, Melo VFP, Sereia RC, Fachiolli DF, Almeida FA, Souza LGM, Franzluebbers AJ (2020) An innovative corn to silage-grass-legume intercropping system with oversown black oat and soybean to silage in succession for the improvement of nutrient cycling. Front Sustain Food Syst 4:544996. https://doi.org/10.3389/fsufs.2020.544996

    Article  Google Scholar 

  • Paulino VT, Teixeira EMC, Duarte KMR, Lucena MAC (2014) Chemical attributes of a Typic Acrudox soil on Marandu palisade grass under rotational stocking, liming and nitrogen fertilisation. Am J Plant Sci 5:1039–1048. https://doi.org/10.4236/ajps.2014.57116

    Article  CAS  Google Scholar 

  • Pereira FCBL, Mello LMM, Pariz CM, Mendonça VZ, Yano EH, Miranda EEV, Crusciol CAC (2016) Autumn maize intercropped with tropical forages: crop residues, nutrient cycling, subsequent soybean and soil quality. Rev Bras Cienc Solo v 40:e0150003

    Google Scholar 

  • Peterson CA, Nunes PAA, Martins AP, Bergamaschi H, Anghinoni I, Carvalho PCF, Gaudin ACM (2019) Winter grazing does not afect soybean yield despite lower soil water content in a subtropical crop-livestock system. Agron Sustain Dev 39:26. https://doi.org/10.1007/s13593-019-0573-3

    Article  CAS  Google Scholar 

  • Raphael JPA, Calonego JC, Milori DMBP, Rosolem CA (2016) Soil organic matter in crop rotations under no-till. Soil Tillage Res 155:45–53

    Article  Google Scholar 

  • Rocha KF, Souza M, Almeida DS, Chadwick DR, Jones DL, Mooney SJ, Rosolem CA (2020a) Cover crops affect the partial nitrogen balance in a maize-forage cropping system. Geoderma 360:114000. https://doi.org/10.1016/j.geoderma.2019.114000

    Article  CAS  Google Scholar 

  • Rocha KF, Kuramae EE, Borges BMF, Leite MFA, Rosolem CA (2020b) Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system. Arch Microbiol. https://doi.org/10.1007/s00203-020-01910-2

    Article  PubMed  Google Scholar 

  • Rosolem CA, Sgariboldi T, Garcia RA, Calonego JC (2010) Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Commun Soil Sci Plant Anal 4:1934–1943

    Article  Google Scholar 

  • Rosolem CA, Steiner F (2017) Effects of soil texture and rates of K input on potassium balance in tropical soil. Eur J Soil Sci 68:658–666. https://doi.org/10.1111/ejss.12460

    Article  CAS  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2008) Semidetailed land use mapping in the Cerrado. (In Portuguese with English abstract.) Pesqi. Agropecu Bras 43:153–156. https://doi.org/10.1590/S0100-204X2008000100020

    Article  Google Scholar 

  • Santos PM, Primavesi OM, Bernardi AC (2010).“Adubação de pastagens,” in Bovinocultura de Corte, Vol. I, ed A. V. Pires (Piracicaba: FEALQ), 459–472.

  • SAS Institute (2015) Procedure Guide for Personal Computers. Version 9.4. Cary.

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Soil Survey Staff (2014) Keys to Soil Taxonomy, 12th edn. Department of Agriculture Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Silva DJ, Queiroz AC (2002) Análise de alimentos: métodos químicos e biológicos. 3 ed. (In Portuguese). Viçosa: UFV.

  • Tanaka KS, Crusciol CAC, Soratto RP, Momesso L, Costa CHM, Franzluebbers AJ, Oliveira Junior A, Calonego JC (2019) Nutrients released by Urochloa cover crops prior to soybean. Nutr Cycl Agroecosyst 113:267–281. https://doi.org/10.1007/s10705-019-09980-5

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. 2nd ed. (In Portuguese). Porto Alegre: Departamento de Solos, UFRGS

  • Telles TS, Reydon BP, Maia AG (2018) Effects of no-tillage on agricultural land values in Brazil. Land Use Policy 76:124–129. https://doi.org/10.1016/j.landusepol.2018.04.053

    Article  Google Scholar 

  • Unicamp (2020) Center of Meteorological and Climatic Research Applied to Agriculture. Botucatu: Municipalities Climate of S˜ao Paulo State. Available at: www.cpa.unicamp.br/outras-informacoes/clima_muni_086.html. Accessed 20 Feb 2021

  • van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. (In Portuguese). Campinas: Instituto Agronômico

  • Wang X, Gao Y, Zhang H, Shao Z, Sun B, Gao Q (2020) Enhancement of rhizosphere citric acid and decrease of NO3¯/NH4+ ratio by root interactions facilitate N fixation and transfer. Plant Soil 447:169–182. https://doi.org/10.1007/s11104-018-03918-6

    Article  CAS  Google Scholar 

  • Williams A, Jordan NR, Smith RG, Hunter MC, Kammerer M, Kane DA, Koide RT, Davis AS (2018) A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci Rep 8:8467. https://doi.org/10.1038/s41598-018-26896-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Wood SA, Mendelsohn RO (2014) The impact of climate change on agricultural net revenue: a case study in the Fouta Djallon, West Africa. Environ Dev Econ 20:20–36

    Article  Google Scholar 

  • Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F (2020) Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; a meta-analysis. Field Crops Res 246:107661. https://doi.org/10.1016/j.fcr.2019.107661

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP) for financial support (Registry No.: 2011/01057-0) and the National Council for Scientific and Technological Development (CNPq) for an award for excellence in research to the second, third, and tenth authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nídia Raquel Costa, Marcelo Andreotti or Carlos Alexandre Costa Crusciol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, N.R., Andreotti, M., Crusciol, C.A.C. et al. Soybean yield and nutrition after tropical forage grasses. Nutr Cycl Agroecosyst 121, 31–49 (2021). https://doi.org/10.1007/s10705-021-10157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-021-10157-2

Keywords

Navigation