Skip to main content
Log in

Annual agricultural N surplus in France over a 70-year period

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

High levels of nitrogen (N) contamination of ground and surface water are still detected at European and national scales, despite the implementation of Directives, highlighting the need to improve understanding of changes in N pressure. Soil surface nitrogen balance was investigated at the county level in France over a 70-year period to identify areas with high N surpluses and trends in N pressure. Soil surface nitrogen balances were calculated for 90 NUTS3 (Nomenclature of Territorial Units for Statistics in the EU) called ‘departments’ (ranging from 611 to 10,145 km2, median surface area 6032 km2) and one NUTS2 entity. Over the whole period, the N surplus calculated for France as a whole averaged 37 kgN per ha of utilized agricultural area (UAA) and departmental N surpluses mean ranged from 10 to 86 kgN ha UAA−1. Imprecision, i.e. an 80% confidence interval in N surpluses, was calculated using Monte Carlo simulation. Average imprecision for the whole period ranged from 6 to 45 kgN ha UAA−1 across different departments. Analysis revealed that yearly and departmental imprecision values were mainly correlated with N export (R2 = 0.46). Despite this imprecision, the soil surface nitrogen balance was found to be a consistent and suitable tool to determine trends in N pressure at the department level. The model revealed an upward trend in N surplus until the 1990s for 82% of the area studied, and a downward or stable trend for more than 90% of the area since the European Nitrates Directive has been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez R, Steinbach HS, De Paepe JL (2014) A regional audit of nitrogen fluxes in pampean agroecosystems. Agric Ecosyst Environ 184:1–8. doi:10.1016/j.agee.2013.11.003

    Article  CAS  Google Scholar 

  • Anglade J, Billen G, Garnier J (2015) Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere 6:1–24

    Article  Google Scholar 

  • ANSES (2013) Table de composition nutritionnelle des aliments Ciqual. Consulted the 16/08/2014 on https://pro.anses.fr/tableciqual/

  • Aquilina L, Vergnaud-Ayraud V, Labasque T, Bour O, Molénat J, Ruiz L, De Montety V, De Ridder J, Roques C, Longuevergne L (2012) Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface-and groundwaters. Sci Total Environ 435:167–178

    Article  PubMed  Google Scholar 

  • Asmala E, Saikku L, Vienonen S (2011) Import–export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage area. Sci Total Environ 409:4917–4922. doi:10.1016/j.scitotenv.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  • Aubert C, Levasseur P (2005) Le marché des fertilisants organiques en France. Science et Techniques Avicoles 53:31–36

    Google Scholar 

  • Audouin L (1991) Rôle de l’azote et du phosphore dans la pollution animale. Revue Scientifique et Technique de l’OIE 10:629–654

    Article  Google Scholar 

  • Bach M, Frede H-G (2005) Assessment of Agricultural nitrogen balances for municipalities–Example Baden-Wuerttemberg (Germany). EWA online

  • Benoît M (1992) Un indicateur des risques de pollution nommé BASCULE. Courrier de la cellule environnement de l’INRA 18:23–28

    Google Scholar 

  • Bouraoui F, Grizzetti B (2011) Long term change of nutrient concentrations of rivers discharging in European seas. Sci Total Environ 409:4899–4916. doi:10.1016/j.scitotenv.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui F, Grizzetti B (2014) Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci Total Environ 468–469:1267–1277. doi:10.1016/j.scitotenv.2013.07.066

    Article  PubMed  Google Scholar 

  • Bouraoui F, Grizzetti B, Alberto A (2011) Long term nutrient loads entering European seas (Technical report No. EUR 24726 EN), JRC Scientific ans Technical Reports. JRC, Luxembourg

  • Bouwman AF, Van Drecht G, Van der Hoek KW (2005) Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970–2030. Pedosphere 15:137–155

    Google Scholar 

  • Cherry KA, Shepherd M, Withers PJA, Mooney SJ (2008) Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Sci Total Environ 406:1–23. doi:10.1016/j.scitotenv.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  • COMIFER (2013) Teneur en azote des organes vegetaux recoltes pour les cultures de plein champ, les principaux fourrages et la vigne, tableau de rerefrence 2013

  • CORPEN (1988) Bilan de l’azote à l’exploitation. Comité d’Organisation pour des Pratiques agricoles respectueuses de l’Environnement, Paris

  • CORPEN (1999) Estimation des flux d’azote, de phosphore et de potassium associés aux vaches laitières et à leur système fourrager. Comité d’Organisation pour des Pratiques agricoles respectueuses de l’Environnement, Paris

  • CORPEN (2001) Estimation des flux d’azote, de phophore et de potassium associés aux bovins allaitants et aux bovins en croissance ou à l’engrais, issus des troupeaux allaitants et laitiers, et à leur système fourrager. Comité d’Organisation pour des Pratiques agricoles respectueuses de l’Environnement, Paris

  • CORPEN (2003) Estimation des rejets d’azote–phosphore–potassium cuivre et zinc des porcs. Influcence de la conduite alimentaire et du mode de logement des animaux sur la nature et la gestion des déjections produites. Comité d’Organisation pour des Pratiques agricoles respectueuses de l’Environnement, Paris

  • CORPEN (2006) Estimation des rejets d’azote–phosphore–potassium–calcium–cuivre–zinc par les élevages avicoles. Comité d’Organisation pour des Pratiques agricoles respectueuses de l’Environnement, Paris

  • Delteil L (2012) Nutrition et alimentation des animaux d’élevage. Educagri Editions, Dijon

    Google Scholar 

  • deVries W, Leip A, Reinds GJ, Kros J, Lesschen JP, Bouwman AF (2011) Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environ Pollut 159:3254–3268. doi:10.1016/j.envpol.2011.03.038

    Article  CAS  Google Scholar 

  • Duval J (1995) Utilisation des citrouilles dans l’alimentation porcine [WWW Document]. Ecological Agriculture Projects. http://eap.mcgill.ca/agrobio/ab370-12.htm. Accessed 20 Oct 2014

  • EEA (European Environment Agency) (2001) Calculation of nutrient surpluses from agricultural sources—statistics spatialisation by means of CORINE land cover—Application to the case of nitrogen—European Environment Agency (EEA) (Technical No. 51)

  • Fovet O, Ruiz L, Faucheux M, Molénat J, Sekhar M, Vertès F, Aquilina L, Gascuel-Odoux C, Durand P (2015) Using long time series of agricultural-derived nitrates for estimating catchment transit times. J Hydrol 522:603–617. doi:10.1016/j.jhydrol.2015.01.030

    Article  CAS  Google Scholar 

  • Gac A, Béline F, Bioteau T (2006) Flux de gaz à effet de serre (CH4, N2O) et d’ammoniac (NH3) liés à la gestion des déjections animales: Synthèse bibliographique et élaboration d’une base de données. ADEME, Rennes

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Heathwaite AL, Johnes PJ, Peters NE (1996) Trends in nutrients. Hydrol Process 10:263–293

    Article  Google Scholar 

  • Honda Y, Mukasa Y, Suzuki T, Inuyama S (2005) Varietal differences in the basic chemical composition of buckwheat flour in common buckwheat (Fagopyrumesculentum Moench) revealed by principle component analysis. Fagopyrum 22:31–38

    CAS  Google Scholar 

  • Hou Y, Bai Z, Lesschen JP, Staritsky IG, Sikirica N, Ma L, Velthof GL, Oenema O (2016) Feed use and nitrogen excretion of livestock in EU-27. Agric Ecosyst Environ 218:232–244

    Article  CAS  Google Scholar 

  • INRA (2007) Alimentation des bovins, ovins et caprins: besoins des animaux, valeurs des aliments: tables Inra 2007. Editions Quae

  • Leip A, Marchi G, Koeble R, Kempen M, Britz W, Li C (2008) Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 5:73–94

    Article  Google Scholar 

  • Leip A, Britz W, Weiss F, de Vries W (2011) Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ Pollut 159:3243–3253. doi:10.1016/j.envpol.2011.01.040

    Article  CAS  PubMed  Google Scholar 

  • Loucks DP, Van Beek E, Stedinger JR, Dijkman JPM, Villars M (2005) Model sensitivity and uncertainty analysis. In: Water resources systems planning and management an introduction to methods models and applications, studies and reports in hydrology. UNESCO, Paris, pp 255–290

  • Ma W, Yamanaka T (2016) Factors controlling inter-catchment variation of mean transit time with consideration of temporal variability. J Hydrol 534:193–204. doi:10.1016/j.jhydrol.2015.12.061

    Article  Google Scholar 

  • Meisinger JJ, Calderón FJ, Kenkindon DS (2008) Soil nitrogen budgets. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems, agronomy monograph no. 49, pp 505–562

  • Minaudo C, Meybeck M, Moatar F, Gassama N, Curie F (2015) Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012). Biogeosciences 12:2549–2563. doi:10.5194/bg-12-2549-2015

    Article  CAS  Google Scholar 

  • Öborn I, Edwards AC, Witter E, Oenema O, Ivarsson K, Withers PJA, Nilsson SI, RichertStinzing A (2003) Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Eur J Agron 20:211–225. doi:10.1016/S1161-0301(03)00080-7

    Article  Google Scholar 

  • OECD (2013) Nutrients: nitrogen and phosphorus balances. In: Compendium of agric-environmental indicators. OECD Publishing, p 14. Consulted the 27/1/2016 on http://www.keepeek.com/Digital-Asset-Management/oecd/agriculture-and-food/oecd-compendium-of-agri-environmental-indicators_9789264186217-en#.WEklSn3X5p0#page2

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Article  Google Scholar 

  • Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent J-Y, Lancelot C (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar Syst 128:106–122. doi:10.1016/j.jmarsys.2013.05.005

    Article  Google Scholar 

  • Payraudeau S, van der Werf HMG, Vertès F (2007) Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agric Syst 94:416–430. doi:10.1016/j.agsy.2006.11.014

    Article  Google Scholar 

  • Peyraud J-L, Cellier P, Aarts F, Béline F, Bockstaller C, Bourblanc M, Delaby L, Donnars C, Dourmad JY, Dupraz P, Durand P, Faverdin P, Fiorelli JL, Gaigné C, Girard A, Guillaume F, Kuikman P, Langlais A, Le Goffe P, Le Perchec S, Lescoat P, Morvan T, Nicourt C, Parnaudeau V, Pevraud JL, Réchauchère O, Rochette P, Vertès F, Veysset P (2012) Les flux d’azote liés aux élevages, réduire les pertes, rétablir les équilibres. INRA, France

    Google Scholar 

  • Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (2007) Large scale modelling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140. doi:10.1016/S0022-1694(99)00081-5

    Article  Google Scholar 

  • Reidy B, Dämmgen U, Döhler H, Eurich-Menden B, Van Evert FK, Hutchings NJ, Luesink HH, Menzi H, Misselbrook TH, Monteny G-J et al (2008) Comparison of models used for national agricultural ammonia emission inventories in Europe: liquid manure systems. Atmos Environ 42:3452–3464

    Article  CAS  Google Scholar 

  • Salo T, Turtola E (2006) Nitrogen balance as an indicator of nitrogen leaching in Finland. Agric Ecosyst Environ 113:98–107. doi:10.1016/j.agee.2005.09.002

    Article  CAS  Google Scholar 

  • Schoumans OF, Silgram M (eds) (2003) Review and literature evaluation of quantification tools of nutrient losses (EUROHARP report 1-2003, NIVA report, SNO 4739-2003). Olso

  • SoeS (2013) NOPOLU-Agri. Outil de spatialisation des pressions de l’agriculture. Méthodologie et résultats pour les surplus d’azote et les émissions des gaz à effet de serre. Campagne 2010–2011. Ministère du Développement durable et de l’Énergie

  • SSP, Service de la statistique et de la prospective, M. de l’Agriculture de l’Agroalimentaire et de la Forêt. Statistique agricole annuelle 1940 à 2010. Paris

  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • UNIFA (2008) Exporter les pailles conséquences pour la fertilisation. Consulted the 03/0.2/2015 on http://www.unifa.fr/fichiers/ferti-pratiques/ferti-pratique_14.pdf

  • Uusitalo L, Lehikoinen A, Helle I, Myrberg K (2015) An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ Model Softw 63:24–31. doi:10.1016/j.envsoft.2014.09.017

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of the scientific program Eutrophication-Trends, supported with European funds (FEDER, Fond Européen de Développement Régional), Etablissement Public Loire, and the Agence de l’Eau Loire Bretagne (Loire River Basin authority) and was continued in the scientific program Nitrogen Surpluses funded by the ONEMA (Organisme National de l’Eau et des Milieux Aquatiques). The authors would like to thank the experts who contributed to this work: L. Delaby and P. Faverdin (UMR Pegase), R. Duval (ITB, Institut technique de la betterave), L. Champolivier and A. Merrien (CETIOM, Centre Technique Interprofessionnel des Oléagineux Métropolitains), J.M. Gravoueille (CNTIP, Comité national interprofessionnel de la pomme de terre), M. Herve (COMIFER, Comité Français d’Etude et de Développement de la Fertilisation Raisonnée), C. Le Souder, F. Bert (ARVALIS), A. Colombani, S. Boneschi and G. Giroux (SSP, Service de la Statistique et de la prospective). The authors are also grateful to M. Billen, J. Garnier and L. Lassaletta for their helpful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Poisvert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poisvert, C., Curie, F. & Moatar, F. Annual agricultural N surplus in France over a 70-year period. Nutr Cycl Agroecosyst 107, 63–78 (2017). https://doi.org/10.1007/s10705-016-9814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9814-x

Keywords

Navigation