Skip to main content

Advertisement

Log in

Periodic P fertilizer application is recommended for small-holder farmers in Northeast China: evidence from a 12-year study

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Phosphorus (P) fertilizer prices rose more than 150 % in the past two decades, thus periodic P fertilization (purchasing and applying superphosphate periodically) could be economically beneficial to small-holder farmers. Still, it is necessary to determine if periodic P fertilization could sustain corn production compared to annual P fertilization. Corn (Zea mays L.) obtains P for its growth and development from soil solution, which is replenished by soil P fractions associated with the soil minerals (inorganic P, Pi) and organic matter (organic P, Po). It is expected that P fertilization regimes (annual vs. periodic applications) will influence the concentration of soil P fractions contributing to corn P nutrition. The objective of the study was to evaluate soil Pi and Po fractions and P uptake in corn agroecosystems of Northeast China under two fertilizer regimes: triple-superphosphate applied annually at 0, 25 or 75 kg P ha−1, or applied periodically (once every 6 years) as 150 or 450 kg P ha−1. During the two 6-year periods (1997–2002 and 2003–2008), both periodic and annual triple-superphosphate application significantly (P < 0.05) increased the NaHCO3-Pi (93–453 %), NaOH-Pi (44–135 %) and HCl-Pi (11–45 %) fractions, thus sustaining crop P requirements. Although annual P fertilization gave 35 % more NaHCO3-Pi, 28 % more NaOH-Pi, 15 % greater HCl-Pi and 4 % more crop P uptake at the end of each 6-year period, there was no significant difference in corn yield. Therefore, periodic P application (once in 6 years) is recommended as an economical practice that could lower the cost of P fertilization for small-holder farmers producing corn in Northeast China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aulakh MS, Kabba BS, Baddesha HS, Bahl GS, Gill MPS (2003) Crop yields and phosphorus fertilizer transformations after 25 years of applications to a subtropical soil under groundnut-based cropping systems. Field Crops Res 83:283–296. doi:10.1016/S0378-4290(03)00078-9

    Article  Google Scholar 

  • Beck MA, Sanchez PA (1994) Soil phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult. Soil Sci Soc Am J 58:1424–1431

    Article  CAS  Google Scholar 

  • Boschetti NG, Quintero CE, Giuffre L (2008) Phosphorus fractions of soils under Lotus corniculatus as affected by different phosphorus fertilizers. Biol Fertil Soils 45:379–384. doi:10.1007/s00374-008-0341-z

    Article  Google Scholar 

  • Chakraborty D, Nair VD, Chrysostome M, Harris WG (2011) Soil phosphorus storage capacity in manure-impacted Alaquods: implications for water table management. Agric Ecosyst Environ 142:167–175. doi:10.1016/j.agee.2011.04.019

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • De Schrijver A, Vesterdal L, Hansen K, De Frenne P, Augusto L, Achat DL, Staelens J, Baeten L, De Keersmaeker L, De Neve S, Verheyen K (2012) Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia 169:221–234. doi:10.1007/s00442-011-2185-8

    Article  PubMed  Google Scholar 

  • Gichangi EM, Mnkeni PNS, Brookes PC (2009) Effects of goat manure and inorganic phosphate addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions. Soil Sci Plant Nutr 55:764–771. doi:10.1111/j.1747-0765.2009.00415.x

    Article  CAS  Google Scholar 

  • Guo F, Yost RS, Hue NV, Evensen CI, Silva JA (2000) Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci Soc Am J 64:1681–1689

    Article  CAS  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Compton BL, Blamey FPC (2000) A simplified, sequential, phosphorus fractionation method. Commun Soil Sci Plant 31:1981–1991. doi:10.1080/00103620009370556

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Jalali M, Ranjbar F (2010) Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma 155:101–106. doi:10.1016/j.geoderma.2009.11.030

    Article  CAS  Google Scholar 

  • Jalali M, Tabar S (2011) Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. J Plant Nutr Soil Sci 174:523–531. doi:10.1002/jpln.201000217

    Article  CAS  Google Scholar 

  • Kang J, Amoozegar A, Hesterberg D, Osmond DL (2011) Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma 161:194–201. doi:10.1016/j.geoderma.2010.12.019

    Article  CAS  Google Scholar 

  • Kuo S, Huang B, Bembenek R (2005) Effects of long-term phosphorus fertilization and winter cover cropping on soil phosphorus transformations in less weathered soil. Biol Fertil Soils 41:116–123. doi:10.1007/s00374-004-0807-6

    Article  CAS  Google Scholar 

  • Lan ZM, Lin XJ, Wang F, Zhang H, Chen CR (2012) Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Biol Fertil Soils 48:579–588. doi:10.1007/s00374-011-0650-5

    Article  CAS  Google Scholar 

  • Maene LM (2007) International fertilizer supply and demand. In: Australian fertilizer industry conference. International Fertilizer Industry Association

  • Motavalli PP, Miles RJ (2002) Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol Fertil Soils 36:35–42. doi:10.1007/s00374-002-0500-6

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Negassa W, Leinweber P (2009) How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 172:305–325. doi:10.1002/jpln.200800223

    Article  CAS  Google Scholar 

  • Qin HL, Quan Z, Liu XL, Li MD, Zong Y, Wu JS, Wei WX (2010) Phosphorus status and risk of phosphate leaching loss from vegetable soils of different planting years in suburbs of Changsha, China. Agric Sci China 9:1641–1649. doi:10.1016/s1671-2927(09)60261-3

    Article  CAS  Google Scholar 

  • Richter DD, Allen HL, Li JW, Markewitz D, Raikes J (2006) Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150:259–271. doi:10.1007/s00442-006-0510-4

    Article  PubMed  Google Scholar 

  • Saleque MA, Naher UA, Islam A, Pathan ABMBU, Hossain ATMS, Meisner CA (2004) Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Sci Soc Am J 68:1635–1644

    Article  CAS  Google Scholar 

  • Schmidt JP, Buol SW, Kamprath EJ (1997) Soil phosphorus dynamics during 17 years of continuous cultivation: a method to estimate long-term P availability. Geoderma 78:59–70. doi:10.1016/S0016-7061(97)00011-6

    Article  Google Scholar 

  • Shen S (1998) Chinese soil fertility. China agriculture press, Beijing (in Chinese)

    Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Sommerville DW, Whalen JK (2005) Phosphorus fertilization and asparagus yield during establishment years. Can J Plant Sci 85:687–692

    Article  CAS  Google Scholar 

  • Srivastava PC, Singh AP, Kumar S, Ramachandran V, Shrivastava M, D’souza SF (2013) Evaluation of phosphorus enriched post-methanation biosludges as phosphorus sources: chemical speciation and field study. J Plant Nutr 36:617–632. doi:10.1080/01904167.2012.754034

    Article  CAS  Google Scholar 

  • Sugihara S, Funakawa S, Nishigaki T, Kilasara M, Kosaki T (2012) Dynamics of fractionated P and P budget in soil under different land management in two Tanzanian croplands with contrasting soil textures. Agric Ecosyst Environ 162:101–107. doi:10.1016/j.agee.2012.07.019

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction: soil sampling and methods of analysis. Chemical Rubber Company (CRC) press Inc., State of Florida, pp 78–86

    Google Scholar 

  • USDA Economic Research Service (2013) Fertilizer use and price [Internet]. United States Department of Agriculture (USDA) Economic Research Service. http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#26727

  • Vandecar KL, Lawrence D, Wood T, Oberbauer SF, Das R, Tully K, Schwendenmann L (2009) Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest. Ecology 90:2547–2555. doi:10.1890/08-1516.1

    Article  PubMed  Google Scholar 

  • Verma S, Subehia SK, Sharma SP (2005) Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biol Fertil Soils 41:295–300. doi:10.1007/s00374-004-0810-y

    Article  CAS  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a mediterranean climate. Plant Soil 304:21–33. doi:10.1007/s11104-007-9516-x

    Article  CAS  Google Scholar 

  • Vu DT, Armstrong RD, Newton PJ, Tang C (2010a) Long-term changes in phosphorus fractions in growers’ paddocks in the northern Victorian grain belt. Nutr Cycl Agroecosyst 89:351–362. doi:10.1007/s10705-010-9400-6

    Article  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2010b) Transformations and availability of phosphorus in three contrasting soil types from native and farming systems: a study using fractionation and isotopic labeling techniques. J Soils Sediment 10:18–29

    Article  CAS  Google Scholar 

  • Wang YZ, Chen X, Lu CY, Zhao MQ, Du YF, Shi Y (2014a) Effects of phosphorus application rate and frequency on phosphorus adsorption and water extractable phosphorus in a meadow brown soil over 12-year field micro-plot trials. Fresen Environ Bull 23:1524–1528

    CAS  Google Scholar 

  • Wang YZ, Huang Y, Shi Y, Chen X, Huang B, Lu CY (2014b) Effects of phosphorus application methods on nutrition uptake and soil properties over 12-year field micro-plot trials—II: soil available micronutrients and their relationship with soil properties. Fresen Environ Bull 23:43–50

    Google Scholar 

  • Wei LL, Chen CR, Xu ZH (2010) Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biol Fertil Soils 46:765–769. doi:10.1007/s00374-010-0464-x

    Article  CAS  Google Scholar 

  • Yin Y, Liang CH (2013) Transformation of phosphorus fractions in paddy soil amended with pig manure. J Soil Sci Plant Nutr 13:809–818

    Google Scholar 

  • Zamuner EC, Picone LI, Echeverria HE (2008) Organic and inorganic phosphorus in Mollisol soil under different tillage practices. Soil Tillage Res 99:131–138. doi:10.1016/j.still.2007.12.006

    Article  Google Scholar 

  • Zhang TQ, MacKenzie AF, Liang BC, Drury CF (2004) Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci Soc Am J 68:519–528

    Article  CAS  Google Scholar 

  • Zhao MQ, Chen X, Shi Y, Lu CY (2010) Effects of phosphorus application methods on nutrition uptake and soil prosperities over 12-year field micro-plot trials I: phosphorus uptake and soil test phosphorus. Fresen Environ Bull 19:2748–2752

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by National Natural Science Foundation of China (Grant Nos. 41271317 and 31470624). Finally we thank the SERG writing group (McGill university) for reviewing earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, X., Whalen, J.K. et al. Periodic P fertilizer application is recommended for small-holder farmers in Northeast China: evidence from a 12-year study. Nutr Cycl Agroecosyst 103, 241–253 (2015). https://doi.org/10.1007/s10705-015-9745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9745-y

Keywords

Navigation