Skip to main content

Advertisement

Log in

Modeling of soil nutrient balances, flows and stocks revealed effects of management on soil fertility in south Ecuadorian smallholder farming systems

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Linking nutrient balances and flows to soil nutrient stocks creates a valuable indicator for sustainability assessment in agricultural land-use systems. Therefore, we investigated the impact of management on soil fertility at farm/field scale using the Nutmon approach. A detailed methodology for the adaptation of the difficult-to-quantify flows to the local conditions is described. Research was carried out in the three farming systems of Yantzaza (low-external-input), El Tambo (irrigated cash crops) and San Lucas (integrated nutrient management) in southern Ecuador. For each land-use within a farm (annual and perennial crops, pasture, forest), soil nutrient balances and flows were modeled with Nutmon and soil nutrient stocks were calculated for NPK. Soil nutrient balances were evaluated using potential socio-economic and soil fertility explanatory variables. Balances for the different land-uses in the three research areas varied between −151 to 66 kg ha−1 a−1 for N, −4 to 33 kg ha−1 a−1 for P and −346 to 39 kg ha−1 a−1 for K and were mainly negative. Up to 70 % of the balances’ variability was explained by soil fertility variables and financial flows. Highest external inputs existed in land-uses with a strong market orientation. Land-uses benefiting from a surplus of within-farm flows had the highest soil nutrient stocks. The focus on N fertilization induced highly negative PK balances in annual crops of El Tambo. In contrast, the application of organic fertilizers and nutrient recycling in San Lucas resulted in positive NP balances particularly for perennial crops. NP balances in annual crops of Yantzaza were most negative due to nonexistent fertilization, leaching and burning of crop residues. A non-sustainable land-use of annual crops in Yantzaza was illustrated by total N stock decreases of 4.9 % a−1 and decreased soil organic carbon stocks to 85 % of adjacent forest sites. Results indicated a potential risk regarding sustainable management of soils in the research area and provide a basis for policy and decision makers to develop appropriate management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulkadir A, Leffelaar PA, Agbenin JO, Giller KE (2013) Nutrient flows and balances in urban and peri-urban agroecosystems of Kano, Nigeria. Nutr Cycl Agroecosyst 95(2):231–254. doi:10.1007/s10705-013-9560-2

    Article  CAS  Google Scholar 

  • Aubry C, Papy F, Capillon A (1998) Modelling decision-making processes for annual crop management. Agric Syst 56(1):45–65. doi:10.1016/S0308-521X(97)00034-6

    Article  Google Scholar 

  • Bahr E, Hamer U, Zaragocin DC, Makeschin F (2013) Different fertilizer types affected nitrogen and carbon cycling in eroded and colluvial soils of Southern Ecuador. Agric Sci 4(12A):19–32. doi:10.4236/as.2013.412A002

    Google Scholar 

  • Bahr E, Chamba Zaragocin D, Makeschin F (2014) Soil nutrient stock dynamics and land-use management of annuals, perennials and pastures after slash-and-burn in the Southern Ecuadorian Andes. Agric Ecosyst Environ 188:275–288. doi:10.1016/j.agee.2014.03.005

    Article  Google Scholar 

  • Barbier EB (2004) Agricultural, expansion, resource booms and growth in Latin America: implications for long-run economic development. World Dev 32(1):137–157. doi:10.1016/j.worlddev.2003.07.005

    Article  Google Scholar 

  • Barrios E, Trejo MT (2003) Implications of local soil knowledge for integrated soil management in Latin America. Geoderma 111(3–4):217–231. doi:10.1016/S0016-7061(02)00265-3

    Article  Google Scholar 

  • Bascomb CL (1964) Rapid method for determination of cation-exchange capacity of calcareous and non-calcareous soils. J Sci Food Agric 15(12):821–823. doi:10.1002/jsfa.2740151201

    Article  CAS  Google Scholar 

  • Berkhout ED, Schipper RA, Van Keulen H, Coulibaly O (2011) Heterogeneity in farmers’ production decisions and its impact on soil nutrient use: results and implications from northern Nigeria. Agric Syst 104(1):63–74. doi:10.1016/j.agsy.2010.09.006

    Article  Google Scholar 

  • Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79(1):49–59. doi:10.1016/j.catena.2009.05.010

    Article  Google Scholar 

  • Bindraban PS, Stoorvogel JJ, Jansen DM, Vlaming J, Groot JJR (2000) Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agric Ecosyst Environ 81(2):103–112. doi:10.1016/S0167-8809(00)00184-5

    Article  Google Scholar 

  • Borbor-Cordova MJ, Boyer EW, McDowell WH, Hall CA (2006) Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 79(1–2):135–161. doi:10.1007/s10533-006-9009-7

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soil. Soil Sci 59:39–45. doi:10.1097/00010694-194501000-00006

    Article  CAS  Google Scholar 

  • Cañadas Cruz L (1983) Mapa bioclimático y ecológico del Ecuador. Ministerio de Agricultura y Ganadería/Programa Nacional de Regionalización, Quito

    Google Scholar 

  • Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges and progress. Agric Ecosyst Environ 136(1–2):1–15. doi:10.1016/j.agee.2009.11.006

    Article  Google Scholar 

  • Cueva J, Chalán L (2010) Cobertura Vegetal y Uso Actual del Suelo de la Provincia de Loja. Technical report. Departamento de Sistemas de Información Geográfica de Naturaleza & Cultura Internacional. Gráficas Amazonas. Loja, Ecuador. Available at: http://www.naturalezaycultura.org/docs/Informe%20Cobertura%20Vegetal.pdf

  • da Silva AM (2004) Rainfall erosivity map for Brazil. Catena 57(3):251–259. doi:10.1016/j.catena.2003.11.006

    Article  Google Scholar 

  • De Jager A, Nandwa SM, Okoth PF (1998) Monitoring nutrient flows and economic performance in African farming systems (NUTMON) I. Concepts and methodologies. Agric Ecosyst Environ 71(1–3):37–48. doi:10.1016/S0167-8809(98)00130-3

    Article  Google Scholar 

  • De Jager A, Onduru D, van Wijk MS, Vlaming J, Gachini GN (2001) Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agric Syst 69(1–2):99–118. doi:10.1016/S0308-521X(01)00020-8

    Article  Google Scholar 

  • de Koning GHJ, van de Kop PJ, Fresco LO (1997) Estimates of sub-national nutrient balances as sustainability indicators for agro-ecosystems in Ecuador. Agric Ecosyst Environ 65(2):127–139. doi:10.1016/S0167-8809(97)00059-5

    Article  Google Scholar 

  • de Koning GHJ, Veldkamp A, Fresco LO (1998) Land use in Ecuador: a statistical analysis at different aggregation levels. Agric Ecosyst Environ 70(2–3):231–247. doi:10.1016/S0167-8809(98)00151-0

    Article  Google Scholar 

  • de Willigen P (2000) An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach. Plant research international BV, Wageningen, Report 18

  • Dercon G, Deckers J, Poesen J, Govers G, Sanchez H, Ramirez M, Vanegas R, Tacuri E, Loaiza G (2006) Spatial variability in crop response under contour hedgerow systems in the Andes region of Ecuador. Soil Till Res 86(1):15–26. doi:10.1016/j.still.2005.01.017

    Article  Google Scholar 

  • Elias E, Morse S, Belshaw DGR (1998) Nitrogen and phosphorus balances of Kindo Koisha farms in southern Ethiopia. Agric Ecosyst Environ 71(1–3):93–113. doi:10.1016/S0167-8809(98)00134-0

    Article  Google Scholar 

  • Esilaba AO, Nyende P, Nalukenge G, Byalebeka JB, Delve RJ, Ssali H (2005) Resource flows and nutrient balances for crop and animal production in smallholder farming systems in eastern Uganda. Agric Ecosyst Environ 109(3–4):192–201. doi:10.1016/j.agee.2005.03.013

    Article  Google Scholar 

  • ESPAC (2014) Visualizador de estadísticas agropecuarias del Ecuador. http://www.inec.gob.ec/estadisticas/?option=com_content&view=article&id=103&Itemid=75. Accessed 06/08/2014

  • Færge J, Magid J (2004) Evaluating NUTMON nutrient balancing in sub-Saharan Africa. Nutr Cycl Agroecosyst 69(2):101–110. doi:10.1023/B:FRES.0000029680.97610.51

    Article  Google Scholar 

  • FAO (2004) Scaling soil nutrient balances—enabling mesolevel applications for African realities. FAO, Rome

    Google Scholar 

  • FAO, IUSS, ISRIC (2006) World reference base for soil resources 2006. World soil resources reports no. 103. Food and Agriculture Organization of the United Nations, Rome

  • Graham PH, Rosas JC, de Jensen CE, Peralta E, Tlusty B, Acosta-Gallegos J, Pereira PAA (2003) Addressing edaphic constraints to bean production: the bean/cowpea CRSP project in perspective. Field Crop Res 82(2–3):179–192. doi:10.1016/s0378-4290(03)00037-6

    Article  Google Scholar 

  • Guo LB, Cowie AL, Montagu KD, Gifford RM (2008) Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiata D. Don. plantation in Australia. Agric Ecosyst Environ 124(3–4):205–218. doi:10.1016/j.agee.2007.09.013

    Article  CAS  Google Scholar 

  • Haileslassie A, Priess JA, Veldkamp E, Lesschen JP (2006) Smallholders’ soil fertility management in the central highlands of Ethiopia: implications for nutrient stocks, balances and sustainability of agroecosystems. Nutr Cycl Agroecosyst 75(1–3):135–146. doi:10.1007/s10705-006-9017-y

    Article  CAS  Google Scholar 

  • Haileslassie A, Priess JA, Veldkamp E, Lesschen JP (2007) Nutrient flows and balances at the field and farm scale: exploring effects of land-use strategies and access to resources. Agric Syst 94(2):459–470. doi:10.1016/j.agsy.2006.11.013

    Article  Google Scholar 

  • Hansen JP, Vinther FP (2001) Spatial variability of symbiotic N-2 fixation in grass-white clover pastures estimated by the N-15 isotope dilution method and the natural N-15 abundance method. Plant Soil 230(2):257–266. doi:10.1023/a:1010390901845

    Article  CAS  Google Scholar 

  • Hartemink AE (2006) Assessing soil fertility decline in the tropics using soil chemical data. In: Advances in agronomy, vol 89. Elsevier Academic Press, San Diego, pp 179–225. doi:10.1016/s0065-2113(05)89004-2

  • Hengsdijk H, Meijerink GW, Mosugu ME (2005) Modeling the effect of three soil and water conservation practices in Tigray, Ethiopia. Agric Ecosyst Environ 105(1–2):29–40. doi:10.1016/j.agee.2004.06.002

    Article  Google Scholar 

  • Hilhorst T, Muchena FN, Defoer T, Hassink J, De Jager A, Smaling EMA, Toulmin C (2000) Managing soil fertility in Africa: diverse settings and changing practice. In: Hilhorst T, Muchena F (eds) Nutrients on the move: Soil fertility dynamics in African farming systems. International Institute for Environment and Development, London, pp 1–25

    Google Scholar 

  • Hughes RF, Kauffman JB, Cummings DL (2002) Dynamics of aboveground and soil carbon and nitrogen stocks and cycling of available nitrogen along a land-use gradient in Rondonia, Brazil. Ecosystems 5(3):244–259. doi:10.1007/s10021-001-0069-1

    Article  CAS  Google Scholar 

  • International Network of Food Data Systems (INFOODS) (2014) FAO. http://www.fao.org/infoods/infoods/tables-and-databases/latin-america/en/. Accessed 29/07/2014

  • Janssen BH (1999) Basic of budgets, buffers, abd balances of nutrients in relation to sustainability of agroecosystems. In: Smaling EMA, Oenema O, Fresco LO (eds) Nutrient disequilibria in agroecosystems: concepts and case studies. CABI Publishing, Wallingford, pp 27–56

    Google Scholar 

  • Kingston HM, Jassie LB (1986) Microwave-energy for acid decomposition at elevated-temperatures and pressures using biological and botanical samples. Anal Chem 58(12):2534–2541. doi:10.1021/ac00125a038

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF (1995) The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biol Biochem 27(6):753–760. doi:10.1016/0038-0717(94)00242-s

    Article  CAS  Google Scholar 

  • Lesschen JP, Stoorvogel JJ, Smaling EMA, Heuvelink GBM, Veldkamp A (2007) A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr Cycl Agroecosyst 78(2):111–131. doi:10.1007/s10705-006-9078-y

    Article  Google Scholar 

  • Lüer B, Böhmer A (2000) Comparison between percolation and extraction with 1 M NH4Cl solution to determine the effective cation exchange capacity (CECeff) of soils. J Plant Nutr Soil Sci 163(5):555–557. doi:10.1002/1522-2624(200010)163:5<555:aid-jpln555>3.3.co;2-r

    Article  Google Scholar 

  • Manlay RLJ, Ickowicz A, Masse D, Floret C, Richard D, Feller C (2004) Spatial carbon, nitrogen and phosphorus budget of a village in the West African savanna—I. Element pools and structure of a mixed-farming system. Agric Syst 79(1):55–81. doi:10.1016/s0308-521x(03)00053-2

    Article  Google Scholar 

  • Marrs R, Proctor J, Heaney A, Mountford M (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76(2):466–482. doi:10.2307/2260606

    Article  Google Scholar 

  • Miller RO (1998) Nitric-perchloric acid wet digestion in an open vessel. In: Kalra Y (ed) Handbook of reference methods for plant analysis. CRC Press LLC, Boca Raton, pp 57–61

    Google Scholar 

  • Mulligan M, Rubiano J, Hyman G, White D, Garcia J, Saravia M, Gabriel LJ, Selvaraj JJ, Guttierez T, Saenz-Cruz LL (2010) The Andes basins: biophysical and developmental diversity in a climate of change. Water Int 35(5):472–492. doi:10.1080/02508060.2010.516330

    Article  Google Scholar 

  • Neill C, Piccolo MC, Steudler PA, Melillo JM, Feigl BJ, Cerri CC (1995) Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biol Biochem 27(9):1167–1175. doi:10.1016/0038-0717(95)00036-e

    Article  CAS  Google Scholar 

  • Nwoke OC, Vanlauwe B, Diels J, Sanginga N, Osonubi O (2004) The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of West Africa. Nutr Cycl Agroecosyst 69(2):127–141. doi:10.1023/B:FRES.0000029677.09424.ef

    Article  CAS  Google Scholar 

  • Nyamangara J, Bergström L, Piha M, Giller K (2003) Fertilizer use efficiency and nitrate leaching in a tropical sandy soil. J Environ Qual 32(2):599–606. doi:10.2134/jeq2003.0599

    Article  CAS  PubMed  Google Scholar 

  • Nziguheba G, Palm CA, Buresh RJ, Smithson PC (1998) Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant Soil 198(2):159–168. doi:10.1023/a:1004389704235

    Article  CAS  Google Scholar 

  • Ochoa-Cueva P, Fries A, Montesinos P, Rodríguez-Díaz JA, Boll J (2013) Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degrad Dev. doi:10.1002/ldr.2219

    Google Scholar 

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20(1–2):3–16. doi:10.1016/s1161-0301(03)00067-4

    Article  Google Scholar 

  • Oenema O, Janssen BH, Smaling E, Hoffland E (2006) Nutrient management in tropical agroecosystems. Agric Ecosyst Environ 116(1–2):1–3. doi:10.1016/j.agee.2006.03.008

    Article  Google Scholar 

  • Oldeman L, Hakkeling Ru, Sombroek WG (1990) World map of the status of human-induced soil degradation: an explanatory note. Global assessment of soil degradation. International Soil Reference and Information Centre, Wageningen

    Google Scholar 

  • Olsen SR, Cole CV, Wanatabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington DC

  • Onduru DD, De Jager A, Muchena FN, Gachimbi L, Gachini GN (2007) Socio-economic factors, soil fertility management and cropping practices in mixed farming systems of sub-saharan Africa: a study in Kiambu, central highlands of Kenya. Int J Agric Res 2(5):426–439. doi:10.3923/ijar.2007.426.439

    Article  CAS  Google Scholar 

  • Phong LT, Stoorvogel JJ, van Mensvoort MEF, Udo HMJ (2011) Modeling the soil nutrient balance of integrated agriculture–aquaculture systems in the Mekong Delta, Vietnam. Nutr Cycl Agroecosyst 90(1):33–49. doi:10.1007/s10705-010-9410-4

    Article  CAS  Google Scholar 

  • Pohle P (2008) The people settled around Podocarpus National Park. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies: analysis and synthesis, vol 198. Springer, Berlin, pp 25–36. doi:10.1007/978-3-540-73526-7_3

    Chapter  Google Scholar 

  • Pohle P, Gerique A, Park M, Lopez Sandoval MF (2010) Human ecological dimensions in sustainable utilization and conservation of tropical mountain rain forests under global change in southern Ecuador. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change: ecological and socio-economic valuations. Environmental science and engineering:environmental engineering. Springer, Heidelberg, pp 477–509. doi:10.1007/978-3-642-00493-3_23

  • Potthast K, Hamer U, Makeschin F (2012a) In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co-limited by N and P. Appl Soil Ecol 62:103–114. doi:10.1016/j.apsoil.2012.08.003

    Article  Google Scholar 

  • Potthast K, Hamer U, Makeschin F (2012b) Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry 111(1–3):151–167. doi:10.1007/s10533-011-9626-7

    Article  CAS  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrol Process 5(1):59–79. doi:10.1002/hyp.3360050106

    Article  Google Scholar 

  • Raison RJ, Khanna PK, Woods PV (1985) Mechanisms of element transfer to the atmosphere during vegetation fires. Can J For Res 15(1):132–140. doi:10.1139/x85-022

    Article  CAS  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture handbook no. 703. Washington

  • Rhoades CC, Coleman DC (1999) Nitrogen mineralization and nitrification following land conversion in montane Ecuador. Soil Biol Biochem 31(10):1347–1354. doi:10.1016/S0038-0717(99)00037-1

    Article  CAS  Google Scholar 

  • Richter M (2003) Using epiphytes and soil temperatures for eco-climatic interpretations in southern Ecuador. Erdkunde 57(3):161–181. doi:10.3112/erdkunde.2003.03.01

    Article  Google Scholar 

  • Sanchez PA, Palm CA, Buol SW (2003) Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma 114(3–4):157–185. doi:10.1016/s0016-7061(03)00040-5

    Article  CAS  Google Scholar 

  • Sato S, Comerford NB (2008) The non-recoverable phosphorus following sorption onto a Brazilian Ultisol. Biol Fertil Soils 44(4):649–652. doi:10.1007/s00374-007-0255-1

    Article  Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum. Blackwell Wissenschaftsverlag, Berlin

    Google Scholar 

  • Scrimshaw NS (1997) INFOODS: the international network of food data systems. Am J Clin Nutr 65(4):1190S–1193S

    CAS  PubMed  Google Scholar 

  • Sheldrick WF, Syers JK, Lingard J (2003) Soil nutrient audits for China to estimate nutrient balances and output/input relationships. Agric Ecosyst Environ 94(3):341–354. doi:10.1016/s0167-8809(02)00038-5

    Article  Google Scholar 

  • Shepherd KD, Soule MJ (1998) Soil fertility management in west Kenya: dynamic simulation of productivity, profitability and sustainability at different resource endowment levels. Agric Ecosyst Environ 71(1–3):131–145. doi:10.1016/S0167-8809(98)00136-4

    Article  Google Scholar 

  • Smaling EMA, Fresco LO (1993) A decision-support model for monitoring nutrient balances under agricultural land use (NUTMON). Geoderma 60(1–4):235–256. doi:10.1016/0016-7061(93)90029-K

    Article  Google Scholar 

  • Smaling EMA, Stoorvogel JJ, Windmeijer PN (1993) Calculating soil nutrient balances in Africa at different scales. Fertil Res 35(3):237–250. doi:10.1007/BF00750642

    Article  CAS  Google Scholar 

  • Smaling EMA, Oenema O, Fresco LO (1999) Nutrient disequilibria in agroecosystems: concepts and case studies. CABI Publishing, Wallingford

    Google Scholar 

  • Smith CS, McDonald GT (1998) Assessing the sustainability of agriculture at the planning stage. J Environ Manag 52(1):15–37. doi:10.1006/jema.1997.0162

    Article  Google Scholar 

  • Sonder K (2002) Soil erosion in andean cropping systems: the impact of rainfall erosivity. Dissertation, Hohenheim, Hohenheim

  • Stoorvogel JJ (1993) Optimizing land-use distribution to minimize nutrient depletion—a case-study for the Atlantic zone of Costa-Rica. Geoderma 60(1–4):277–292. doi:10.1016/0016-7061(93)90031-F

    Article  Google Scholar 

  • Stoorvogel JJ, Smaling EMA (1990) Assessment of soil nutrient depletion in sub-Saharan Africa: 1983–2000. Vol. II: nutrient balances per crop and per land use systems. DLO-Winand Staring Centre, Report 28, Wageningen

  • Stoorvogel JJ, Smaling EMA (1998) Research on soil fertility decline in tropical environments: integration of spatial scales. Nutr Cycl Agroecosyst 50(1–3):151–158. doi:10.1023/A:1009732126336

    Article  Google Scholar 

  • Stoorvogel JJ, Antle JM, Crissman CC (2004) Trade-off analysis in the Northern Andes to study the dynamics in agricultural land use. J Environ Manag 72(1–2):23–33. doi:10.1016/j.jenvman.2004.03.012

    Article  CAS  Google Scholar 

  • Surendran U, Murugappan V (2006) A micro- and meso-level modeling study for assessing sustainability in semi-arid tropical agro ecosystem using NUTMON-toolbox. J Sustain Agric 29(2):151–179. doi:10.1300/J064v29n02_10

    Article  Google Scholar 

  • Tan ZX, Lal R, Wiebe KD (2005) Global soil nutrient depletion and yield reduction. J Sustain Agric 26(1):123–146. doi:10.1300/J064v26n01_10

    Article  Google Scholar 

  • Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87(5):383–408. doi:10.1016/j.fuproc.2005.08.015

    Article  CAS  Google Scholar 

  • Tittonell P, Vanlauwe B, de Ridder N, Giller KE (2007) Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: soil fertility gradients or management intensity gradients? Agric Syst 94(2):376–390. doi:10.1016/j.agsy.2006.10.012

    Article  Google Scholar 

  • UGT (2011) Sistema Económico Productivo. Gobierno Provincial de Zamora Chinchipe, Zamora

    Google Scholar 

  • van Beek CL, Onduro DD, Gachimbi LN, de Jager A (2008) Farm nitrogen flows of four farmer field schools in Kenya. Nutr Cycl Agroecosyst 83(1):63–72. doi:10.1007/s10705-008-9199-6

    Article  Google Scholar 

  • Van den Bosch H, De Jager A, Vlaming J (1998) Monitoring nutrient flows and economic performance in African farming systems (NUTMON) II. Tool development. Agric Ecosyst Environ 71(1–3):49–62. doi:10.1016/S0167-8809(98)00131-5

    Article  Google Scholar 

  • van der Velde M, See L, Fritz S (2012) Agriculture: soil remedies for small-scale farming. Nature 484(7394):318. doi:10.1038/484318c

    Article  PubMed  Google Scholar 

  • Vandenbygaart AJ, Kroetsch D, Gregorich EG, Lobb D (2012) Soil C erosion and burial in cropland. Glob Change Biol 18(4):1441–1452. doi:10.1111/j.1365-2486.2011.02604.x

    Article  Google Scholar 

  • Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116(1–2):34–46. doi:10.1016/j.agee.2006.03.016

    Article  Google Scholar 

  • Vanlauwe B, Tittonell P, Mukalama J (2006) Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutr Cycl Agroecosyst 76(2–3):171–182. doi:10.1007/s10705-005-8314-1

    CAS  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller K, Merckx R, Mokwunye U, Ohiokpehai O, Pypers P, Tabo R, Shepherd K (2010) Integrated soil fertility management operational definition and consequences for implementation and dissemination. Outlook Agric 39(1):17–24. doi:10.5367/000000010791169998

    Article  Google Scholar 

  • Veldkamp A, Kok K, De Koning GHJ, Schoorl JM, Sonneveld MPW, Verburg PH (2001) Multi-scale system approaches in agronomic research at the landscape level. Soil Till Res 58(3–4):129–140. doi:10.1016/s0167-1987(00)00163-x

    Article  Google Scholar 

  • Vincent AG, Turner BL, Tanner EV (2010) Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61(1):48–57. doi:10.1111/j.1365-2389.2009.01200.x

    Article  CAS  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98(4):725–736. doi:10.1111/j.1365-2745.2010.01664.x

    Article  Google Scholar 

  • Weng CY, Bush MB, Athens JS (2002) Holocene climate change and hydrarch succession in lowland Amazonian Ecuador. Rev Palaeobot Palyno 120(1–2):73–90

    Article  Google Scholar 

  • Wilcke W, Yasin S, Fleischbein K, Goller R, Boy J, Knuth J, Valarezo C, Zech W (2008) Nutrient status and fluxes at the field and catchment scale. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of ecuador. Ecological studies: analysis and synthesis. Springer, Berlin, pp 203–216. doi:10.1007/978-3-540-73526-7_20

  • Wilcke W, Günter S, Alt F, Geißler C, Boy J, Knuth J, Oelmann Y, Weber M, Valarezo C, Mosandl R (2009) Response of water and nutrient fluxes to improvement fellings in a tropical montane forest in Ecuador. For Ecol Manag 257(4):1292–1304. doi:10.1016/j.foreco.2008.11.036

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agricultural handbook, 537. United States department of agriculture, Washington

  • Yu B, Rosewell CJ (1996) A robust estimator of the R-factor for the universal soil loss equation. Trans ASAE 39(2):559–561

    Article  Google Scholar 

Download references

Acknowledgments

The study was funded by the German Research Foundation (DFG) and was conducted within the Research Unit 816. We are grateful to the laboratory team for the accurate performance and to our Ecuadorian co-workers for actively supporting our field work. We thank Fernando Oñate-Valdivieso of the UTPL for the provision of a DEM for erosion modeling. Special thanks are given to Alexander Tischer, Susanne Frank and Lars Koschke for helpful comments and revising the manuscript. We are grateful to the three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Bahr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahr, E., Chamba-Zaragocin, D., Fierro-Jaramillo, N. et al. Modeling of soil nutrient balances, flows and stocks revealed effects of management on soil fertility in south Ecuadorian smallholder farming systems. Nutr Cycl Agroecosyst 101, 55–82 (2015). https://doi.org/10.1007/s10705-014-9662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9662-5

Keywords

Navigation