Skip to main content

Advertisement

Log in

Recovery of N applied as 15N-manure or 15N-gliricidia biomass by maize, cotton and cowpea

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Proper management of N applied in fertilizers is important to optimize crop production and to avoid negative environmental impacts. The best way to study N dynamics in the soil plant system is to use fertilizers labeled with 15N. Recoveries of nitrogen following fertilization with 15N-labeled goat (Capra hircus L.) manure and gliricidia (Gliricidia sepium Jacq. Walp) biomass were evaluated in a greenhouse experiment with three successive planting cycles of three crops: maize (Zea mays L.), cotton (Gossypium hirsutum L.), and cowpea (Vigna unguiculata (L.) Walp.). Each 1 kg soil pot received 8 g (equivalent to 20 Mg ha−1) of either manure (12.3 mg g−1 of N) or gliricidia (37.8 mg g−1 of N). Plants were harvested 50 days after germination and real (15N) and apparent recoveries of the applied N were determined. Biomass and N amounts in the cotton and maize crops in all three cycles were higher with gliricidia application than with manure, except for cotton in the first cycle. The biomass of cowpea was also higher with gliricídia in the first and second cycles but the amount of N was significantly higher only in the second cycle. In the first cycle, the largest recoveries of 15N were obtained with gliricidia, for all three crops, but in the second and third cycles recoveries were greater with manure, so that the real recoveries of gliricidia and manure were similar (cotton, 35 and 37 %; maize, 27 and 26 %; and cowpea, 41 and 38 % of the applied N, respectively). Estimates of apparent recoveries were different from the real ones and therefore inadequate for cotton and cowpea. The fast release of N from gliricidia prunings and, on the other hand, the strong residual effect of goat manure-N to subsequent cropping cycles should be considered by farmers in their fertilization strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Axmann H, Zapata F (1990) Stable and radioactive isotopes. In: Hardarson G (ed) Use of nuclear techniques in studies of soil-plant relationships. IAEA, Vienna, pp 9–34

    Google Scholar 

  • Azeez JO, Averbeke WV (2010) Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresource Technology 101:5645logy

  • Brito MMP, Muraoka T, Silva EC (2011) Contribuição da fixação biológica de nitrogênio, fertilizante nitrogenado e nitrogênio do solo no desenvolvimento de feijão e caupi. Bragantia 70:206–215

    Article  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120

    Article  CAS  Google Scholar 

  • Diekmann KH, Datta SK, Ottow JCG (1993) Nitrogen uptake and recovery from urea and green manure in lowland rice measured by and non-isotope techniques. Plant Soil 150:311–321

    Article  CAS  Google Scholar 

  • EMBRAPA—Embrapa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solos. Embrapa, Rio de Janeiro 370

    Google Scholar 

  • Ferreira DF (2003). Software Sisvar: versão 4.6. Lavras: DEX/UFLA

  • Garza HMQ, Delgado JA, Wong JAC, Lindemann WC (2009) 15N uptake fom manure and fertilizer sources by three consecutive crops under controlled conditions. Rev. Bras. Ci. Solo 33:1249–1258

    Article  Google Scholar 

  • Gava GJC, Trivelin PCO, Oliveira MW, Heinrichs R, Silva MA (2006) Balanço do nitrogênio da uréia (15N) no sistema solo-planta na implantação da semeadura direta na cultura do milho. Bragantia 65:477–486

    Article  CAS  Google Scholar 

  • Henriksen TM, Korsaeth A, Breland TA, Stenberg B, Jensen S, Bruun S, Gudmundsson J, Palmason F, Pedersen A, Salo T (2007) Stepwise chemical digestion, near-infrared spectroscopy or total N measurement to take account of decomposability of plant C and N in a mechanistic model. Soil Biol Biochem 38:3115–3126

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station 347:1–32

    Google Scholar 

  • Hungria M, Vargas MAT (1997) Fixação biológica de nitrogênio em feijoeiro. In: Hungria M, Vargas MAT, Araújo RS. Biologia dos solos dos cerrados. Planaltina, Embrapa-Cpac, p 524

  • IAEA—International Atomic Energy Agency (1983) A guide to the use of nitrogen—15 and radioisotopes in studies of plant nutrition: calculations and interpretation of data. A technical document issued by the International Atomic Agency, Vienna: IAEATECDOC-288, p 63

  • Jensen B, Sorensen P, Jensen ES, Thomsen IK, Christensen BT (1999) Availability of nitrogen in 15N-labeled ruminant manure components to successively grown crops. Soil Sci Soc Am J 63:416–423

    Article  CAS  Google Scholar 

  • Jokela WE (1994) Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil Sci Soc Am J 56:148–154

    Article  Google Scholar 

  • Klausner SD (1994) Mass nutrient balances on dairy farms. In: Cornell Nutrition Conference, Rochester. Proceedings pp 19–21

  • Mafongoya PL, Barak P, Reed JD (2000) Carbon, nitrogen and phosphorus mineralization of tree leaves and manure. Biol Fertil Soils 30:298–305

    Article  Google Scholar 

  • Mauchly JW (1940) Significance test for sphericity of a normal n-variate distribution. Ann Math Stat 11:204–209

    Article  Google Scholar 

  • Mohanty M, Reddy KS, Probert ME, Dalal RC, Rao AS, Menzies NW (2011) Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol Model 3:719–726

    Article  Google Scholar 

  • Mundus S, Menezes RSC, Neergaard A, Garrido MS (2008) Maize growth and soil nitrogen availability after fertilization with cattle manure and/or gliricidia in semi-arid NE Brazil. Nutr Cycl Agroecosyst 82:61–73

    Article  Google Scholar 

  • Ng Kee Kwong KF, Deville J, Cavalot PC, Riviere V (1987) Value of cane trash in nitrogen nutrition of sugarcane. Plant Soil 102:79–83

    Article  Google Scholar 

  • Paul JW, Beauchamp EG (1995) Availability of manure slurry ammonium for corn using 15N-labelled (NH4)2SO4. Can J Soil Sci 75:35–42

    Article  Google Scholar 

  • Peinetti HR, Menezes RSC, Tiessen H, Marin AMP (2008) Simulating plant productivity under different organic fertilization practices in a maize/native pasture rotation system in semi-arid NE Brazil. Comput Electron Agric 62:204–222

    Article  Google Scholar 

  • Rumjanek NG, Martins LMV, Xavier GR, Neves MCP (2005) Fixação biológica de nitrogênio. Freire Filho FR, Lima JAA, Ribeiro VQ. Feijão-caupi; avanços tecnológicos. Brasília, Embrapa/Informação Tecnológica, pp 281–335

    Google Scholar 

  • Salazar FJ, Chadwick D, Pain BF, Hatch D, Owen E (2005) Nitrogen budgets for three cropping systems fertilized with cattle manure. Bioresour Technol 96:235–245

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MA, Jones RM (1997) Forage yields, nutrient uptake, soil chemical changes and nitrogen volatilization from Bermudagrass treated with dairy manure. J Prod Agric 10:266–271

    Article  Google Scholar 

  • Sas Institute. Sas/stat user’s guide (2001) Version 9.1 Cary: SAS Institute

  • Scivittaro WB, Muraoka T, Boaretto AE, Trivelin PCO (2003) Transformações do nitrogênio proveniente de mucuna-preta e uréia utilizados como adubo na cultura do milho. Pesq. Agropec. Bras 38:1427–1433

    Article  Google Scholar 

  • Sclhlesinger WH (1997) Biogeochemistry: An analysis of global change. Academic Press, USA 588

    Google Scholar 

  • Sharma KL, Grace JK, Srinivas K, Venkateswarlu B, Korwar GR, Sankar GM, Mandal UK, Ramesh V, Bindu VH, Madhavi M, Gajbhiye PN (2009) Influence of tillage and nutrient sources on yield sustainability and soil quality under sorghum-mung bean system in rainfed semi-arid tropics. Commun Soil Sci Plant Anal 40:2579–2602

    Article  CAS  Google Scholar 

  • Sorensen P (2001) Short-term nitrogen transformations in soil amended with animal manure. Soil Biol Biochem 33:1211–1216

    Article  CAS  Google Scholar 

  • Sørensen P (2004) Immobilisation, remineralisation and residual effects in subsequent crops of dairy cattle slurry nitrogen compared to mineral fertiliser nitrogen. Plant Soil 267:285–296

    Article  Google Scholar 

  • Thomsen IK (2001) Recovery of nitrogen from composted and anaerobically stored manure labelled with 15N. Eur J Agron 15:31–41

    Article  Google Scholar 

  • Trivelin PCO, Franco HCJ (2011) Adubação nitrogenada e a sustentabilidade de agroecossistemas. In: Tópicos em ciências do solo. Vol. VII. SBCS

  • Trivelin PCO, Salati E, Matsui E (1973) Preparo de amostras para análise de 15N por espectrometria de massas. Piracicaba: USP, p 41 (Cena. Boletim Técnico, 2)

  • Tsai SM, Bonetti R, Agbala SM, Rosseto R (1993) Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant Soil 152:131–138

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) MCT/CNPq/CT-Agronegócio Nº 43/2008 and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), processo IBPG-1662-5.01/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dário Costa Primo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primo, D.C., Menezes, R.S.C., de Sá Barretto Sampaio, E.V. et al. Recovery of N applied as 15N-manure or 15N-gliricidia biomass by maize, cotton and cowpea. Nutr Cycl Agroecosyst 100, 205–214 (2014). https://doi.org/10.1007/s10705-014-9638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9638-5

Keywords

Navigation