Skip to main content
Log in

Mode-I penny-shaped crack problem in an infinite space of one-dimensional hexagonal piezoelectric quasicrystal: exact solutions

  • Research
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper aims to study the Mode-I penny-shaped crack problem of an infinite body of one-dimensional hexagonal piezoelectric quasicrystal. The problem is transformed into a mixed-boundary value problem in the context of electro-elasticity of quasicrystals, and the corresponding integro-differential equations are analytically solved. Two extreme cases of electrically impermeable and permeable crack surface are considered. By virtue of the generalized potential theory method, the three-dimensional complete analytical solutions of three-dimensional crack problems under symmetric concentrated and uniform loads are expressed in terms of elementary functions. Important parameters in fracture mechanics are explicitly derived, such as crack surface displacements, the distributions of generalized stresses at the crack tip and the corresponding generalized stress intensity factors. The validity of the proposed solutions and the coupling effect of phonon-phason-electric fields are investigagted through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Castaneda-Via J, Landauro CV, Quispe-Marcatoma J, Champi A, Montalvo F, Delgado L, Tay LY, Moya MJ, Guillen R, Rumiche F, Pena-Rodriguez V (2021) Improvement of mechanical properties of hydroxyapatite composites reinforced with i-\(Al{_64}Cu{_23}Fe{_13}\) quasicrystal. J Compos Mater 55(9):1209–1216

    Article  Google Scholar 

  • Chen WQ, Lim CM (2005) 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium. Int J Fract 131:231–246

    Article  MATH  Google Scholar 

  • Chen YH, Lu TJ (2003) Cracks and fracture in piezoelectrics. Adv Appl Mech 39:121–215

    Article  Google Scholar 

  • Dubois JM (2011) So useful, those quasicrystals. Isr J Chem 51:1168–1175

    Article  Google Scholar 

  • Fabrikant VI (1989) Application of potential theory in mechanics: a section of new results. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Fabrikant VI (1991) Mixed boundary value problem of potential theory and their applications in engineering. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Fan TY (2011) Mathematical theory of elasticity of quasicrystals and application. Springer, Heidelberg

    Book  Google Scholar 

  • Guo HM, Gao M, Zhao GZ, Jiang LJ (2019) The plane strain analysis for one-dimensional hexagonal piezoelectric quasicrystals strip in aperiodical plan. IOP Conf Ser Earth Environ Sci 218:012072

    Article  Google Scholar 

  • Hu KQ, Jin H, Yang ZJ, Chen X (2019) Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech 230(7):2455–2474

    Article  MathSciNet  MATH  Google Scholar 

  • Huang YZ, Chen J, Zhao M, Feng ML (2021) Electromechanical coupling characteristics of double-layer piezoelectric quasicrystal actuators. Int J Mech Sci 196:106293

    Article  Google Scholar 

  • Kang N, Fu YQ, Coddet P, Guelorget B, Liao HL, Coddet C (2017) On the microstructure, hardness and wear behavior of Al-Fe-Cr quasicrystal reinforced Al matrix composite prepared by selective laser melting. Mater Des 132:105–111

    Article  Google Scholar 

  • Kenzari S, Bonina D, Dubois JM, Fournee V (2012) Quasicrystal-polymer composites for selective laser sintering technology. Mater Des 35:691–695

    Article  Google Scholar 

  • Li XY (2014) Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int J Solids Struct 51(6):1442–1455

    Article  Google Scholar 

  • Li XY, Li PD, Wu TH, Shi MX, Zhu ZW (2014) Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys Lett A 378:826–834

    Article  MathSciNet  MATH  Google Scholar 

  • Li XY, Zheng RF, Kang GZ, Chen WQ, Müller R (2016) Closed-form field in an infinite space of transversely isotropic multiferroic composite medium with an elliptical or penny-shaped crack: 3D exact analysis. Int J Solids Struct 80:96–117

    Article  Google Scholar 

  • Li PD, Li XY, Kang GZ, Müller R (2017a) Three-dimensional fundamental solution of a penny-shaped crack in an infinite thermo-magneto-electro-elastic medium with transverse isotropy. Int J Mech Sci 130:203–220

    Article  Google Scholar 

  • Li XY, Zheng RF, Chen WQ, Kang GZ, Gao CF, Muller R (2017b) Three-dimensional exact magneto-electro-elastic field in an infinite transversely isotropic space with an elliptical crack under uniform loads: Shear mode. Int J Eng Sci 116:104–129

    Article  MathSciNet  MATH  Google Scholar 

  • Li PD, Li XY, Kang GZ (2018) Axisymmetric thermo-elastic field in an infinite one-dimensional hexagonal quasi-crystal space containing a penny-shaped crack under anti-symmetric uniform heat fluxes. Eng Fract Mech 190:74–92

    Article  Google Scholar 

  • Liu QH, Yan B, Liu JJ (2019) U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl Phys Express 12(5):052014

    Article  Google Scholar 

  • Loboda V, Komarov O, Bilyi D, Lapusta Y (2020) An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal. Acta Mech 231(8):3419–3433

    Article  MathSciNet  MATH  Google Scholar 

  • Loboda V, Sheveleva A, Lapusta Komarov OY (2021) An interface crack with mixed electrical conditions at it faces in 1D quasicrystal with piezoelectric effect. Mech Adv Mater Struct 29(23):3334–3344

    Article  Google Scholar 

  • Oliveira VS, Camboim MM, de Souza CP, de Lima BASG, Baiocchi O, Kim HS (2021) A thermoelectric energy harvester based on microstructured quasicrystalline solar absorber. Micromachines 12(4):393

    Article  Google Scholar 

  • Sakly A, Kenzari S, Bonina D, Corbel S, Fournee V (2014) A novel quasicrystal-resin composite for stereolithography. Mater Des 56:280–285

    Article  Google Scholar 

  • Shechtman D, Belch I, Gratias D, Cahn JW (1984) Metallic phase with long-range oritentational order and no translational symmetry. Phys Rev Lett 53(20):1951–1953

    Article  Google Scholar 

  • Shi AQ, Ge R, Liu JJ (2019) Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity. Superlattices Microstruct 133:106198

    Article  Google Scholar 

  • Wolf W, Schulz R, Savoie S, Bolfarini C, Kiminami CS, Botta WJ (2017) Structural, mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications. Surf Coat Technol 319:241–248

    Article  Google Scholar 

  • Wu TH, Li XY, Tang HP (2021) Three-dimensional fields in an infinite transversely isotropic magneto-electro-elastic space with multiple coplanar penny-shaped cracks. Int J Eng Sci 159:103434

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang TY, Liu GN, Wang TH, Tong P (2007) Application of the concepts of fracture mechanics to the failure of conductive cracks in piezoelectric ceramics. Eng Fract Mech 74(7):1160–1173

    Article  Google Scholar 

  • Zhang LY, Zhang HL, Li Y, Wang JB, Lu CG (2022) Static electro-mechanical response of axisymmetric one-dimensional piezoelectric quasicrystal circular actuator. Materials 15(9):3157

    Article  Google Scholar 

  • Zheng RF, Deng ZC (2022) Fundamental solutions for penny-shaped and half-plane cracks in one-dimensional hexagonal quasicrystals: shear mode. Appl Math Model 108:275–293

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou YB, Li XF (2018) Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal. Philos Mag 98(19):1780–1798

    Article  Google Scholar 

  • Zhou YB, Li XF (2018) Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng Fract Mech 189(15):133–147

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos.: 12072297, 12192210 and 12192211), Key Project of the Science and Technology Department of Sichuan Province, PR China (No.: 2021YJ0003). The supports from the Fundamental Research Funds for the Central Universities, PR China (No.: 2682021ZTPY056) and the Yanghua plan in Southwest Jiaotong University, PR China (2019) are acknowledged as well.

Author information

Authors and Affiliations

Authors

Contributions

JZ: Methodology, Software, Investigation, Formal analysis, Visualization, Writing-original draft. XL: Conceptualization, Funding acquisition, Writing-review and editing, Project administration, Supervision, Validation, Data curation. GK: Writing-review and editing, Project administration, Supervision, Validation, Data curation.

Corresponding authors

Correspondence to Xiangyu Li or Guozheng Kang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

This Appendix gives the expressions of constants in Section 2.

$$\begin{aligned}&{\lambda _{1i}} = {s_i}\left( {{c_1} - {b_1}s_i^2 + {a_1}s_i^4} \right) \nonumber \\ {}&{\lambda _{ki}} = {a_k}s_i^6-{b_k}s_i^4+{c_k}s_i^2 -{d_k},\;\;\left( {k = 2,3,4} \right)&\end{aligned}$$
(A.1a)
$$\begin{aligned}&{\alpha _{1i}} = {{{\lambda _{2i}}}/{{\lambda _{1i}}}},\;\;{\alpha _{2i}} = {{{\lambda _{3i}}} /{{\lambda _{1i}}}},\;\;{\alpha _{3i}} = {{{\lambda _{4i}}}/{{\lambda _{1i}}}}&\end{aligned}$$
(A.1b)
$$\begin{aligned}&{\gamma _{1i}} = {s_i}\left( {{c_{33}}{\alpha _{1i}} + {R_2}{\alpha _{2i}} + {e_{33}}{\alpha _{3i}}} \right) - {c_{13}}\nonumber \\ {}&{\gamma _{2i}} = {s_i}\left( {{R_2}{\alpha _{1i}} + {K_1}{\alpha _{2i}} + {{e'}_{33}}{\alpha _{3i}}} \right) - {R_1}\nonumber \\ {}&{\gamma _{3i}} = {s_i}\left( {{e_{33}}{\alpha _{1i}} + {{e'}_{33}}{\alpha _{2i}} + {\xi _{33}}{\alpha _{3i}}} \right) - {e_{31}}\nonumber \\&{\gamma _{4i}} = 2{s_i}\left( {{c_{13}}{\alpha _{1i}} + {R_1}{\alpha _{2i}} + {e_{31}}{\alpha _{3i}}} \right) - {c_{11}} - {c_{12}}&\end{aligned}$$
(A.1c)
$$\begin{aligned}&{\beta _{1i}} = {c_{44}}\left( {{\alpha _{1i}} + {s_i}} \right) + {R_3}{\alpha _{2i}} + {e_{15}}{\alpha _{3i}}\nonumber \\&{\beta _{2i}} = {R_3}\left( {{\alpha _{1i}} + {s_i}} \right) + {K_2}{\alpha _{2i}} + {{e'}_{15}}{\alpha _{3i}}\nonumber \\&{\beta _{3i}} = {e_{15}}\left( {{\alpha _{1i}} + {s_i}} \right) + {{e'}_{15}}{\alpha _{2i}} - {\xi _{11}}{\alpha _{3i}}&\end{aligned}$$
(A.1d)
$$\begin{aligned}&{\rho _1} = {c_{44}},\;\;{\rho _2} = {R_3},\;\;{\rho _3} = {e_{15}}&\end{aligned}$$
(A.1e)

where \({a_i}\), \({b_i}\), \({c_i}\), \({d_i}\) are detailded in Appendix \(\textrm{A}\) of Li et al. (2014).

Appendix B

This section presents the expression in Eq. (22) for the potential functions \({\Psi _m}\left( z \right) \). Substituting Eq. (21) into Eq. (17), we get

$$\begin{aligned}&{F_m}\left( N_0 \right) =- \frac{1}{A}\sum \limits _{n = 1}^3 {{q_{nm}} {{{P_n}\delta \left( {{\rho _0} - {\rho _n}} \right) \delta \left( {{\phi _0} - {\phi _n}} \right) }/{{\rho _0}}}},\;\; \nonumber \\&\quad \left( {m = 1,2,3} \right) .&\end{aligned}$$
(B.1)

Substituting Eq. (B.1) into Eq. (19), we are led to

$$\begin{aligned}&{\Psi _m}\left( z \right) = \frac{1}{{2{\pi ^3}A}}\sum \limits _{n = 1}^3 {{q_{nm}}{P_n}}\int _0^{2\pi }\nonumber \\ {}&\quad \int _{0}^{a} {K\left( {M;{N_0}} \right) \delta \left( {{\rho _0} - {\rho _n}} \right) \delta \left( {{\phi _0} - {\phi _n}} \right) d{\rho _0}d{\phi _0}},\nonumber \\ {}&\quad \left( {m = 1,2,3} \right) . \end{aligned}$$
(B.2)

According to the selectivity of the Dirac-delta function, Eq. (B.2) are recast to

$$\begin{aligned}&{\Psi _m}\left( z \right) = \frac{1}{{2{\pi ^3}A}}\sum \limits _{n = 1}^3 {{q_{nm}}{P_n}K\left( {M;{N_n}} \right) },\;\; \left( {m = 1,2,3} \right)&\end{aligned}$$
(B.3)

which is identical to Eq. (22).

Appendix C

With the help of the generalized potential theory method (Fabrikant 1989), the partial derivatives of each order of the Green’s function \(K\left( {M,{N_k}} \right) \) for the points \(M \left( {r,\theta ,z} \right) \) and \(N_k\left( { \rho _{k},\phi _k,0} \right) \) are as follows:

$$\begin{aligned}&\Lambda K\left( {M;{N_k}} \right) =2\pi {f_{1k}}\left( z_i \right) \nonumber \\&\quad = \frac{{2\pi }}{{{\bar{q}}}}\left[ {\frac{z_i}{{R_k\left( {M,{N_k}} \right) }}{{\tan }^{ - 1}}\frac{h_k}{{R_k\left( {M,{N_k}} \right) }}} \right. \nonumber \\&\quad \quad \left. { - \frac{{{{\left( {{a^2} - \rho _{k}^2} \right) }^{{1/2}}}}}{{{\bar{s}}}}{{\tan }^{ - 1}}\frac{{{\bar{s}}}}{{{{\left( {l_2^2 - {a^2}} \right) }^{{1/2}}}}}} \right] \end{aligned}$$
(C.1a)
$$\begin{aligned}&\frac{{\partial K\left( {M;{N_k}} \right) }}{{\partial {z_i}}} = 2\pi f_{2k}\left( {{z_i}} \right) \nonumber \\&\quad =- \frac{{2\pi }}{{R_k\left( {M,{N_k}} \right) }}\arctan \left[ {\frac{h_k}{{R_k\left( {M,{N_k}} \right) }}} \right] \end{aligned}$$
(C.1b)
$$\begin{aligned}&\frac{{{\partial ^2}K\left( {M;{N_k}} \right) }}{{\partial z_i^2}} = 2\pi f_{3k}\left( z_i \right) =2\pi \nonumber \\&\quad \left[ {\frac{z_i}{{R_{k}^3}}{{\tan }^{ - 1}}\frac{h_k}{R_k} - \frac{h_k}{{z_i\left( {R_{k}^2 + {h_k^2}} \right) }}\left( {\frac{{{r^2} - l_1^2}}{{l_2^2 - l_1^2}} - \frac{{{{z_i}^2}}}{{R_{k}^2}}} \right) } \right] \end{aligned}$$
(C.1c)
$$\begin{aligned}&{\Lambda ^2}K\left( {M;{N_k}} \right) =2\pi f_{4k}\left( z_i \right) \nonumber \\&\quad =2\pi \left\{ \frac{{\sqrt{{a^2} - \rho _{k}^2} }}{{{\bar{q}} {\bar{s}}}}\left( {\frac{2}{{{\bar{q}} }} - \frac{{{\rho _k}{e^\mathrm{{j}{\phi _k}}}}}{{{{{\bar{s}}}^2}}}} \right) \arctan { \frac{{{\bar{s}}}}{{\sqrt{l_2^2 - {a^2}} }}} \right. \nonumber \\&\quad \quad - \frac{{z_i\left( {3{R_k^2} - {{z_i}^2}} \right) }}{{{{{\bar{q}} }^2}{R _k^3}}}\arctan \frac{h_k}{R_k}\nonumber \\&\quad + \frac{{\sqrt{{a^2} - {r^2}} \sqrt{{l_2}^2 - {a^2}} {\rho _k}{e^\mathrm{{j}{\phi _k}}}}}{{{\bar{q}} {{{\bar{s}}}^2}\left[ {{l_2}^2 - r{\rho _k}{e^{ - \textrm{j}\left( {\theta - {\theta _k}} \right) }}} \right] }} \nonumber \\&\quad \quad \left. - \frac{{{z_i}{h_k}}}{{\left( {{R_k^2} + {h_k^2}} \right) }}\left[ {\frac{q}{{{\bar{q}} {R_k^2}}} - \frac{{{r^2}{e^\mathrm{{j}2\theta }}}}{{\left( {l_2^2 - l_1^2} \right) \left( {{l_2}^2 - {r^2}} \right) }}} \right] \right\} \end{aligned}$$
(C.1d)
$$\begin{aligned}&\Lambda \frac{\partial {K\left( {M;{N_k}} \right) } }{{\partial {z_i}}} = 2\pi f_{5k}\left( {{z_i}} \right) \nonumber \\&\quad =2\pi \left[ {\frac{q}{{{R_k^3}}}\arctan \frac{h_k}{R_k} + \frac{h_k}{{{R_k^2} + {h_k^2}}}\left( {\frac{{r{e^\mathrm{{j}\theta }}}}{{l_2^2 - l_1^2}} + \frac{q}{{{R_k^2}}}} \right) } \right] \end{aligned}$$
(C.1e)

where \(\overline{\left( \cdot \right) }\) represents the conjugate of the indicated complex variable.

$$\begin{aligned}&{\bar{q}} = r{e^{ - \textrm{j}\theta }} - {\rho _k}{e^{ - \textrm{j}{\phi _k}}},\;\;\; {\bar{s}} = \sqrt{ {{a^2} - r{\rho _k}{e^{ - \textrm{j}\left( {\theta - {\phi _k}} \right) }}} }&\nonumber \;\;\;\\&h_k = \sqrt{ {{{\left( {{a^2} - l_1^2} \right) }}{{\left( {{a^2} - \rho _{k}^2} \right) }}}}/{a}&\nonumber \;\;\;\\&{l_{1}} = {l_{1}}(a) = \frac{1}{2}\left[ {{\sqrt{ {{{\left( {r + a} \right) }^2} + {{z_i}^2}} }} - {\sqrt{ {{{\left( {r - a} \right) }^2} + {{z_i}^2}} }}} \right]&\nonumber \;\;\;\\&{l_{2}} = {l_{2}}(a) = \frac{1}{2}\left[ {{\sqrt{ {{{\left( {r + a} \right) }^2} + {{z_i}^2}} }} + {\sqrt{ {{{\left( {r - a} \right) }^2} + {{z_i}^2}} }}} \right]&\nonumber \;\;\;\\&{R_k} = R\left( {M,{N_k}} \right) = \sqrt{ {{r^2} + \rho _{k}^2 - 2r{\rho _k}\cos \left( {\theta - {\phi _k}} \right) + {{z_i}^2}} }.&\end{aligned}$$
(C.2)

The expressions of \(\left[ q\right] \), A and B are given as

\({\textcircled {{1}}}\) the electrically impermeable case

$$\begin{aligned}&\left[ q \right] = \nonumber \\&\quad \left[ {\begin{array}{*{20}{c}} {{g_{22}}{g_{33}} - {g_{23}}{g_{32}}}&{}{ - \left( {{g_{21}}{g_{33}} - {g_{23}}{g_{31}}} \right) }&{}{{g_{21}}{g_{32}} - {g_{22}}{g_{31}}}\\ { - \left( {{g_{12}}{g_{33}} - {g_{13}}{g_{32}}} \right) }&{}{{g_{11}}{g_{33}} - {g_{13}}{g_{31}}}&{}{ - \left( {{g_{11}}{g_{32}} - {g_{12}}{g_{31}}} \right) }\\ {{g_{12}}{g_{23}} - {g_{13}}{g_{22}}}&{}{ - \left( {{g_{11}}{g_{23}} - {g_{13}}{g_{21}}} \right) }&{}{{g_{11}}{g_{22}} - {g_{12}}{g_{21}}} \end{array}} \right]&\nonumber \\&A = {g_{11}}\left( {{g_{22}}{g_{33}} - {g_{23}}{g_{32}}} \right) - {g_{12}}\left( {{g_{21}}{g_{33}} - {g_{23}}{g_{31}}} \right) \nonumber \\ {}&\qquad + {g_{13}}\left( {{g_{21}}{g_{32}} - {g_{31}}{g_{22}}} \right)&\end{aligned}$$
(C.3a)

\({\textcircled {{2}}}\) the electrically permeable case

$$\begin{aligned}&\left[ q \right] = \left[ {\begin{array}{*{20}{c}} { {g_{22}}}&{}{-{g_{21}}}\\ {-{g_{12}}}&{}{ {g_{11}}} \end{array}} \right]&\nonumber \\&B = {g_{11}}{g_{22}} - {g_{12}}{g_{21}}.&\end{aligned}$$
(C.3b)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, X. & Kang, G. Mode-I penny-shaped crack problem in an infinite space of one-dimensional hexagonal piezoelectric quasicrystal: exact solutions. Int J Fract (2023). https://doi.org/10.1007/s10704-023-00742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10704-023-00742-7

Keywords

Navigation