Skip to main content
Log in

Effect of prestrain on ductility and toughness in a high-strength line pipe steel

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fracture properties of a mother plate for API grade X100 line pipe after pre-straining up to 6% are investigated using tensile notched bars and CT pre-cracked specimens. The material has an anisotropic plastic and damage behavior due to the thermo-mechanical control rolling process. Experiments evidence a decrease in both ductility and toughness for both rolling and long transverse direction with increasing prestrains. This effect is however more pronounced at low prestrain levels (\(0\rightarrow 2\%\)) than at higher levels (\(2\rightarrow 4\rightarrow 6\%\)). The modified GTN model proposed by Shinohara et al. (Int J Fract 197:127–145, 2016) is used to represent the database. A good agreement is obtained provided some damage model parameters are modified so as to obtain a slightly higher damage rate for the prestrained materials. This represents the fact that void growth tends to be faster for materials with a lower work hardening rate as evidenced by unit cell calculations. In addition, stress/strain distributions in test specimens are modified for reduced hardening so that stress triaxiality is increased at failure initiation points. This further lowers measured mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alinaghian Y, Asadi M, Weck A (2014) Effect of pre-strain and work hardening rate on void growth and coalescence in AA5052. Int J Plast 53:193–205

    Article  CAS  Google Scholar 

  • Asahi H, Hara T, Tsuru E, Morimoto H (2009) 2009. Development and commercialization of high-strength linepipe. In: Proc. pipeline technology conference, Ostend, pp 12–14

  • ASTM-1820 (2008) Standard test method for measurement of fracture toughness. Technical report

  • Baek J-H, Kim Y-P, Kim C, Kim W, Seok C (2010) Effects of pre-strain on the mechanical properties of API 5L X65 pipe. Mater Sci Eng A 527(6):1473–1479

    Article  CAS  Google Scholar 

  • Barlat F, Lege D, Brem J (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712

    Article  CAS  Google Scholar 

  • Barlat F, Aretz H, Yoon J, Karabin M, Brem J, Dick R (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21(5):1009–1039

    Article  CAS  Google Scholar 

  • Basu S, Benzerga A (2015) On the path-dependence of the fracture locus in ductile materials: experiments. Int J Solids Struct 71:79–90

    Article  Google Scholar 

  • Besson J (2009) Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int J Plast 25:2204–2221

    Article  CAS  Google Scholar 

  • Besson J, Guillemer-Neel C (2003) An extension of the Green and Gurson models to kinematic hardening. Mech Mater 35:1–18

    Article  Google Scholar 

  • Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38(46–47):8259–8284

    Article  Google Scholar 

  • Bron F, Besson J (2004) A yield function for anisotropic materials. Application to aluminium alloys. Int J Plast 20:937–963

    Article  CAS  Google Scholar 

  • Chae D, Bandstra J, Koss D (2000) The effect of pre-strain and strain-path changes on ductile fracture: experiment and computational modeling. Mater Sci Eng A A285:165–171

    Article  CAS  Google Scholar 

  • Eikrem PA, Zhang Z, Nyhus B (2007) Effect of plastic prestrain on the crack tip constraint of pipeline steels. Int J Press Vessels Piping 84(12):708–715

    Article  CAS  Google Scholar 

  • Eikrem P, Zhang Z, Østby E, Nyhus B (2008) Numerical study on the effect of prestrain history on ductile fracture resistance by using the complete Gurson model. Eng Fract Mech 75:4568–4582

    Article  Google Scholar 

  • El-Fadaly M, El-Sarrage T, Eleiche A, Dahl W (1995) Fracture toughness of 20MnMoNi55 steel at different temperatures as affected by room-temperature pre-deformation. J Mater Process Technol 54:159–165

    Article  Google Scholar 

  • Enami K (2005a) Ductile crack initiation behavior in steels with compressive prestrain. J Mar Sci Technol 10:10–41

    Article  Google Scholar 

  • Enami K (2005b) The effects of compressive and tensile prestrain on ductile fracture initiation in steels. Eng Fract Mech 72(7):1089–1105

    Article  Google Scholar 

  • Faleskog J, Gao X, Shih C (1998) Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int J Fract 89:355–373

    Article  Google Scholar 

  • Hill R (1950) The mathematical theory of plasticity. Clarendon Press, Oxford

    Google Scholar 

  • Hughes T (1980) Generalization of selective integration procedures to anisotropic and non linear media. Int J Numer Methods Eng 15:1413–1418

    Article  Google Scholar 

  • Kamaya M (2012) A stress-based criterion for ductile crack initiation of pre-strained carbon steel. Eng Fract Mech 96:461–479

    Article  Google Scholar 

  • Karafillis A, Boyce M (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41:1859–1886

    Article  CAS  Google Scholar 

  • Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24(8):835–853

    Article  Google Scholar 

  • Lillig D (2008) The first (2007) ISOPE strain-based design symposium—a review. In: Proc. 18th international offshore and polar engineering (ISOPE) conference, Vancouver 6-11 July 2008

  • Liu Y, Murakami S, Kanagawa Y (1994) Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics approach. Eur J Mech A 13A(3):395–417

    Google Scholar 

  • Mackenzie A, Hancock J, Brown D (1977) On the influence of state of stress on ductile failure initiation in high strength steels. Eng Fract Mech 9:167–188

    Article  CAS  Google Scholar 

  • Mear M, Hutchinson J (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. Mech Mater 4:395–407

    Article  Google Scholar 

  • Morgeneyer T, Besson J, Proudhon H, Starink M, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in AA2139 al alloy sheet. Acta Mater 57(13):3902–3915

    Article  CAS  Google Scholar 

  • Morin L, Michel J-C, Leblond J-B (2017) A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening. Int J Solids Struct 118:167–178

    Article  Google Scholar 

  • Pardoen T, Hutchinson J (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48(12):2467–2512

    Article  Google Scholar 

  • Rivalin F, Besson J, Pineau A, Di Fant M (2000) Ductile tearing of pipeline-steel wide plates—II: modeling of in-plane crack propagation. Eng Fract Mech 68(3):347–364

    Article  Google Scholar 

  • Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  CAS  Google Scholar 

  • Shinohara Y, Tsuru E, Asahi H, Hara T, Terada Y, Doi N, Ayukawa N, Murata M (2008) Development of high-strength steel line pipe for SBD applications. Int J Offshore Polar Eng 18(3):220–225

    Google Scholar 

  • Shinohara Y, Madi Y, Besson J (2010) A combined phenomenological model for the representation of anisotropic hardening behavior in high strength steel line pipes. Eur J Mech A 29(6):917–927

    Article  Google Scholar 

  • Shinohara Y, Besson J, Madi Y (2012) Anisotropic damage behavior in high-strength line pipe steels. Int J Offshore Polar Eng 22(1):83–89

    CAS  Google Scholar 

  • Shinohara Y, Madi Y, Besson J (2016) Anisotropic ductile failure of a high-strength line pipe steel. Int J Fract 197:127–145

    Article  CAS  Google Scholar 

  • Sivaprasad S, Tarafder S, Ranganath V, Ray K (2000) Effect of prestrain on fracture toughness of HSLA steels. Mater Sci Eng A 284:195–201

    Article  Google Scholar 

  • Song W, Liu X, Berto F, Xu J, Fang H (2017) Numerical simulation of prestrain history effect on ductile crack growth in mismatched welded joints. Fatigue Fract Eng Mater Struct 40(9):1472–1483

    Article  Google Scholar 

  • Tanguy B, Luu T, Perrin G, Pineau A (2008) Plastic and damage behavior of a high strength X100 pipeline steel: experiments and modelling. Int J Press Vessels Piping 85(5):322–335

    Article  CAS  Google Scholar 

  • Thomas N, Basu S, Benzerga A (2016) On fracture loci of ductile materials under non-proportional loading. Int J Mech Sci 117:135–151

    Article  Google Scholar 

  • Thomason PF (1985a) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33(6):1087–1095

    Article  CAS  Google Scholar 

  • Thomason PF (1985b) Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metall 33(6):1079–1085

    Article  CAS  Google Scholar 

  • Tkaczyk T, O’Dowd N, Nikbin K (2011) The effect of prestrain on ductile fracture toughness of reeled pipeline steels. J. Press Vessel Technol 133

  • Tsuru E, Shinohara Y, Asahi H (2008) Evaluation precept for buckling resistance of high-strength UOE line pipes used in strain based design SBD applications. Int J Offshore Polar Eng 18(3):176–182

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Yoo J-Y, Ahn S-S, Seo D-H, Song W-H, Kang K-B (2011) New development of high grade X80 to X120 pipeline steels. Mater Manuf Process 26(1):154–160

    Article  CAS  Google Scholar 

  • Zhang Z, Skallerud B (2010) Void coalescence with and without prestrain history. Int J Damage Mech 19:153–174

    Article  Google Scholar 

  • Zhang S, Leotoing L, Guines D, Thuillier S, Zang S (2014) Calibration of anisotropic yield criterion with conventional tests or biaxial test. Int J Mech Sci 85:142–151

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Nippon Steel Corporation (now Nippon Steel & Sumitomo Metal Corporation) for financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Besson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madi, Y., Shinohara, Y. & Besson, J. Effect of prestrain on ductility and toughness in a high-strength line pipe steel. Int J Fract 224, 15–29 (2020). https://doi.org/10.1007/s10704-020-00442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00442-6

Keywords

Navigation