Skip to main content
Log in

Evaluation of Gurson yield function dependencies through large-scale void growth simulations

  • Brief Note
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Numerical simulation of void growth from thousands of randomly distributed particles is used to assess the functional dependence of the Gurson model. Shock loading of the model region followed by a ramped pressure release creates a smoothly varying velocity field in which the void growth is inertially stabilized. The pressure, effective stress, and void fraction are obtained from the simulation for comparison with the Gurson model. The results show that the pressure-void fraction relation from the model reasonably follows the simulation data, but the numerical data exhibit significantly greater void fraction dependence on the effective stress than the Gurson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker R (2017) Direct numerical simulation of ductile spall failure. Int J Fract. doi:10.1007/s10704-017-0198-y

  • Callaghan K, Becker R (2017) Something about spall. In: Proceedings of the 20th conference on shock compression in condensed matter, St. Louis, MO., (AIP, 2018), p. Submitted for publication

  • Green R (1972) A plasticity theory for porous solids. Int J Mech Sci 14(4):215. doi:10.1016/0020-7403(72)90063-X

    Article  Google Scholar 

  • Grüneisen E (1926) Handbuch der Physik, Zustand des festen Körpers, vol 10. Springer, Berlin, pp 1–59. doi:10.1007/978-3-642-99531-6-1

    Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2. doi:10.1115/1.3443401

    Article  Google Scholar 

  • Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol 213, p 437. http://www.jstor.org/stable/91070

  • Kuhn H, Downey C (1971) Deformation characteristics and plasticity theory of sintered powder materials. Int J Powder Metall 7(1):15

    Google Scholar 

  • Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27(1):1. doi:10.1016/j.euromechsol.2007.08.002

    Article  Google Scholar 

  • Nichols AL (2015) ALE3D. An arbitrary Lagrange/Eulerian 2D and 3D code system. Lawrence Livermore National Laboratory, V4.26 edn. LLNL-SM-681737

  • Steinberg DJ, Cochran SG, Guinan MW (1980) A constitutive model for metals applicable at high-strain rate. J Appl Phys 51(3):1498. doi:10.1063/1.327799

    Article  Google Scholar 

  • Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension compression asymmetry. Int J Solids Struct 48(2):357. doi:10.1016/j.ijsolstr.2010.10.009

  • Torre C (1948) Theorie und Verhalten der zusammengepressten Pulver. Berg-Hüttenmänn. Monatsh. Montan. Hochschule Leoben 93:62

    Google Scholar 

  • Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389. doi:10.1007/BF00036191

    Article  Google Scholar 

  • Vadillo G, Reboul J, Fernndez-Sez J (2016) A modified Gurson model to account for the influence of the Lode parameter at high triaxialities. Eur J Mech A Solids 56:31. doi:10.1016/j.euromechsol.2015.09.010

    Article  Google Scholar 

  • Wen J, Huang Y, Hwang K, Liu C, Li M (2005) The modified Gurson model accounting for the void size effect. Int J Plast 21(2):381. doi:10.1016/j.ijplas.2004.01.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge use of Frontier time on the Department of Defense High Performance Computers for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, R., Callaghan, K. Evaluation of Gurson yield function dependencies through large-scale void growth simulations. Int J Fract 209, 235–240 (2018). https://doi.org/10.1007/s10704-017-0248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0248-5

Keywords

Navigation