Skip to main content
Log in

Modeling the mode I fracture toughness of anisotropic low-density rigid PUR and PIR foams

  • Brief Note
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Low-density foams have to possess a sufficient resistance to cracking in order to ensure the mechanical integrity of foam materials in service, even when not intended for load-bearing applications. In this study, mode I fracture toughness in the foam rise direction has been experimentally characterized for anisotropic rigid commercial polyurethane foams as well as for polyisocyanurate foams produced using polyols derived from rapeseed oil and filled with a montmorillonite nanoclay. Rectangular parallelepiped unit-cell based scaling relations expressing foam toughness via its relative density, cell dimensions, geometrical anisotropy, and the ultimate tensile stress of the base polymer have been employed for prediction of foam toughness. Assuming a brittle fracture of foam struts, a conservative estimate of toughness is obtained. It is demonstrated that considering the yielding of foam struts at the crack front as the criterion of crack extension provides a closer estimate of foam toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersons J, Spārniņš E, Cābulis U, Stirna U (2013) Fracture toughness of PIR foams produced from renewable resources. Key Eng Mater 525–526:29–32

    Google Scholar 

  • Andersons J, Kirpluks M, Stiebra L, Cabulis U (2016) Anisotropy of the stiffness and strength of rigid low-density closed-cell PIR foams. Mater Des 92:836–845

    Google Scholar 

  • Arakere NK, Knudsen EC, Wells D, McGill P, Swanson GR (2008) Determination of mixed-mode stress intensity factors, fracture toughness, and crack turning angle for anisotropic foam material. Int J Solids Struct 45:4936–4951

    Article  Google Scholar 

  • Bednarcyk BA, Aboudi J, Arnold SM, Sullivan RM (2008) Analysis of space shuttle external tank spray-on foam insulation with internal pore pressure. J Eng Mater-T ASME 130:041005

    Article  Google Scholar 

  • Beverte I (2014) Determination of highly porous plastic foam structural characteristics by processing light microscopy images data. J Appl Polym Sci 131:39477

    Article  Google Scholar 

  • Cabulis U, Sevastyanova I, Andersons J, Beverte I (2014) Rapeseed oil-based rigid polyisocyanurate foams modified with nanoparticles of various type. Polimery 59:207–212

    Article  Google Scholar 

  • Dawson JR, Shortall JB (1982) The microstructure of rigid polyurethane foams. J Mater Sci 17:220–224

    Article  Google Scholar 

  • Ganpatye AS, Kinra VK (2006) Fracture toughness of space shuttle external tank insulation foam. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island. doi:10.2514/6.2006-2020

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huber AT, Gibson LJ (1988) Anisotropy of foams. J Mater Sci 23:3031–3040

    Article  Google Scholar 

  • Kim HS, Chun MS, Lee JM, Kim MH (2013) A comparative evaluation of fatigue and fracture characteristics of structural components of liquefied natural gas carrier insulation system. J Press Vess -T ASME 135:021405

    Article  Google Scholar 

  • Kirpluks M, Cābulis U, Kurańska M, Prociak A (2013) Three different approaches for polyol synthesis from rapeseed oil. Key Eng Mater 559:69–74

    Article  Google Scholar 

  • Kraus B, Das R, Banrjee B (2014) Characterization of an anisotropic low-density closed-cell polyurethane foam. Parresia Research Limited Report #20151007CI.01. doi:10.13140/RG.2.1.2971.2088

  • Lee J-R, Dhital D (2013) Review of flaws and damages in space launch vehicle: structures. J Intel Mater Syst Struct 24:4–20

  • Linul E, Marsavina L (2011) Prediction of fracture toughness for open cell polyurethane foams by finite-element micromechanical analysis. Iran Polym J 20:735–746

  • Maiti SK, Ashby MF, Gibson LJ (1984) Fracture toughness of brittle cellular solids. Scr Metall 18:213–217

    Article  Google Scholar 

  • Marsavina L, Linul E, Sadowski T, Constantinescu DM, Knec M, Apostol D (2012) On fracture toughness of polyurethane foams. In: Proc. of the 19th European Conf. on Fracture, Kazan, Russia

  • Pardo-Alonso S, Solórzano E, Estravís S, Rodríguez-Perez MA, de Saja JA (2012) In situ evidence of the nanoparticle nucleating effect in polyurethane-nanoclay foamed systems. Soft Matter 8:11262–11270

    Article  Google Scholar 

  • Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 4:109–155

    Article  Google Scholar 

  • Saenz EE, Carlsson LA, Karlsson AM (2011) In situ analysis of crack propagation in polymer foams. J Mater Sci 46:5487–5494

    Article  Google Scholar 

  • Stirna U, Beverte I, Yakushin V, Cabulis U (2013) Polyurethane and polyisocyanurate foams in external tank cryogenic insulation. In: Kalia S, Fu S-Y (eds) Polymers at cryogenic temperatures. Springer, Berlin, pp 203–244

    Chapter  Google Scholar 

  • Sullivan RM, Ghosn LJ, Lercht BA (2009) Application of an elongated Kelvin model to space shuttle foams. J Spacecr Rocket 46:411–418

    Article  Google Scholar 

  • Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, Boca Raton

    Google Scholar 

  • Workman GL, Davis J, Farrington S, Spalding C, Walker JL (2007) Development of natural flaw samples for evaluating nondestructive testing methods for foam thermal protection systems. In: IV Conferencia Panamericana de END, Buenos Aires, Argentina, 22–26 Oct 2007

  • Yu YH, Kim BG, Lee DG (2013) Cryogenic reliability of the sandwich insulation board for LNG ship. Compos Struct 95:547–556

    Article  Google Scholar 

  • Zieleniewska M, Leszczyński MK, Kurańska M, Prociak A, Szczepkowski L, Krzyżowska M, Ryszkowska J (2015) Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crop Prod 74:887–897

    Article  Google Scholar 

Download references

Acknowledgements

The research has been funded, in part, by the EU Commission through FP7 Project EVOLUTION-314744 and the ERDF via project 2010/0290/2DP/2.1.1.1.0/10/APIA/VIAA/053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andersons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 792 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersons, J., Cābulis, U., Stiebra, L. et al. Modeling the mode I fracture toughness of anisotropic low-density rigid PUR and PIR foams. Int J Fract 205, 111–118 (2017). https://doi.org/10.1007/s10704-017-0194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0194-2

Keywords

Navigation