Skip to main content
Log in

Interface fracture mechanics: theory and experiment

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The purpose of this paper is to review a methodology for predicting interface crack propagation. The materials will be taken to be isotropic and anisotropic. The first term of the asymptotic expansion for the stress and displacement fields is considered. A deterministic failure criterion derived from the interface energy release rate is described. In order to predict failure by means of a statistical approach, two statistical measures are examined. One makes use of a \(t\)-distribution for statistical intervals and the other uses the standard variate to determine a failure probability and confidence interval. The failure probability was set to 10 %, that is there is a 10 % probability that the next observation would unexpectedly be below the failure curve or surface in the safe region. For the \(t\)-statistic, there was a 50 % confidence; for the standard variant model, there was a 95 % confidence. Test results are presented with the failure criteria obtained and examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkinson C (1977) On quasistatic problems of cracks in a non-homogeneous elastic layer. Acta Mech 26:103–113

    Article  Google Scholar 

  • Banks-Sills L, Travitzky N, Ashkenazi D, Eliasi R (1999) A methodology for measuring interface fracture toughness of composite materials. Int J Fract 99:143–161

    Article  Google Scholar 

  • Banks-Sills L, Ashkenazi D (2000) A note on fracture criteria for interface fracture. Int J Fract 103:177–188

    Article  Google Scholar 

  • Banks-Sills L, Boniface V (2000) Fracture mechanics for an interface crack between a special pair of transversely isotropic materials. In: Chuang T-J, Rudnicki JW (eds) Multiscale deformation and fracture in materials and structures-the James R. Rice 60th anniversary volume. Kluwer Academic Publishers, The Netherlands, pp 183–204

    Google Scholar 

  • Banks-Sills L, Travitzky N, Ashkenazi D (2000) Interface fracture properties of a bimaterial ceramic composite. Mech Mater 32:711–722

    Article  Google Scholar 

  • Banks-Sills L, Schwartz J (2002) Fracture testing of Brazilian disk sandwich specimens. Int J Fract 118:191–209

    Article  Google Scholar 

  • Banks-Sills L, Boniface V, Eliasi R (2005) Development of a methodology for determination of interface fracture toughness of laminate composites—the \(0^{\circ }/90^{\circ }\) pair. Int J Solids Struct 42:663–680

    Article  Google Scholar 

  • Banks-Sills L, Freed Y, Eliasi R, Fourman V (2006) Fracture toughness of the \(+45^{\circ }/-45^{\circ }\) interface of a laminate composite. Int J Fract 141:195–210

  • Banks-Sills L (2010) Update—application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 63:020803-1–020803-17

    Article  Google Scholar 

  • Banks-Sills L, Konovalov N, Fliesher A (2010) Comparison of two and three-dimensional analyses of interface fracture data obtained from Brazilian disk specimens. Int J Struct Integr 1:20–42

    Article  Google Scholar 

  • Banks-Sills L, Ikeda T (2011) Stress intensity factors for interface cracks between orthotropic and monoclinic materials. Int J Fract 167:47–56

    Article  Google Scholar 

  • Banks-Sills L (2014) Review on interface fracture and delamination of composites. Strain 50:98–110

    Article  Google Scholar 

  • Cao HC, Evans AG (1989) An experimental study of the fracture resistance of bimaterial interfaces. Mech Mater 7:295–304

    Article  Google Scholar 

  • Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the fifth meeting of the Brazilian Association for Technical Rules, Third Section. pp 126–129 (in Portuguese)

  • Cherepanov GP (1962) The stress state in a heterogeneous plate with slits. Iz AN SSSR, OTN, Mekhan i Mashin 1:131–137 (in Russian)

  • Comninou M (1977) The interface crack. J Appl Mech 44:631–636

    Article  Google Scholar 

  • Comninou M (1978) The interface crack in a shear field. J Appl Mech 45:287–290

    Article  Google Scholar 

  • Comninou M, Schmueser D (1979) The interface crack in a combined tension-compression and shear field. J Appl Mech 46:345–348

    Article  Google Scholar 

  • Deng X (1993) General crack-tip fields for stationary and steadily growing interface cracks in anisotropic bimaterials. J Appl Mech 60:183–189

    Article  Google Scholar 

  • Dundurs J (1969) Discussion: edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J Appl Mech 36:650–6

    Article  Google Scholar 

  • Dundurs J, Comninou M (1979) Some consequences of the inequality conditions in contact and crack problems. J Elast 9:71–82

    Article  Google Scholar 

  • England AH (1965) A crack between dissimilar media. J Appl Mech 32:400–402

    Article  Google Scholar 

  • Erdogan F (1965) Stress distribution in bonded dissimilar materials with cracks. J Appl Mech 32:403–410

    Article  Google Scholar 

  • Freed Y, Banks-Sills L (2005) A through interface crack between a \({\pm 45^{\circ }}\) transversely isotropic pair of materials. Int J Fract 133:1–41

    Article  Google Scholar 

  • Freund JE (1963) Mathematical statistics. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Hutchinson JW, Mear ME, Rice JR (1987) Crack paralleling an interface between dissimilar materials. J Appl Mech 54:828–832

    Article  Google Scholar 

  • Hutchinson JW (1990) Mixed mode fracture mechanics of interfaces. In: Rühle M, Evans AG, Ashby MF, Hirth JP (eds) Metal ceramic interfaces. Pergamon Press, Oxford, pp 295–301

    Chapter  Google Scholar 

  • Hutchinson JW, Suo Z (1991) Mixed mode cracking in layered materials. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 29. Academic Press, California, pp 64–191

    Google Scholar 

  • Ikeda T, Miyazaki N, Soda T (1998) Mixed mode fracture criterion of interface crack between dissimilar materials. Eng Fract Mech 59:725–735

    Article  Google Scholar 

  • Irwin GR (1958) Fracture. In: Flugge S (ed) Handbuch der physik, vol VI. Springer, Germany, pp 551–590

    Google Scholar 

  • Knowles JK, Sternberg E (1983) Large deformation near a tip of an interface-crack between two neo-Hookean sheets. J Elast 13:257–293

  • Liang YM, Liechti KM (1995) Toughening mechanisms in mixed-mode interfacial fracture. Int J Solids Struct 32:957–978

    Article  Google Scholar 

  • Liechti KM, Chai YS (1991) Biaxial loading experiments for determining interfacial fracture toughness. J Appl Mech 58:680–687

    Article  Google Scholar 

  • Luko SN, Neubauer DV (2011) Statistical intervals-Part 2: the predicition interval. Stand News, Sept/Oct 14–15

  • Malyshev BM, Salganik RL (1965) The strength of adhesive joints using the theory of fracture. Int J Fract Mech 1:114–128

    Google Scholar 

  • Natrella MG (1963) Experimental statistics. National Bureau of Standards Handbook 91. U.S. Government Printing Office, Washington, DC, pp. 2-13–2-15

  • Paley M, Aboudi J (1992) Micromechanical analysis of composites by the generalized cells model. Mech Mater 14:127–139

    Article  Google Scholar 

  • Rice JR, Sih GC (1965) Plane problems of cracks in dissimilar media. J Appl Mech 32:418–423

    Article  Google Scholar 

  • Rice JR (1988) Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech 55:98–103

    Article  Google Scholar 

  • Rice JR, Suo Z, Wang JS (1990) Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems. In: Rühle M, Evans AG, Ashby MF, Hirth JP (eds) Metal ceramic interfaces. Pergamon Press, Oxford, pp 269–294

    Chapter  Google Scholar 

  • Rogel L, Banks-Sills L (2010) A through interface crack between a transversely isotropic pair of materials \((+30{^\circ }/-60{^\circ },\, -30{^\circ }/+60{^\circ })\). Eng Fract Mech 77:3261–3291

    Article  Google Scholar 

  • Shanbhag MR, Eswaran K, Maiti SK (1993) Measurement of fracture toughness of bimaterial interfaces and a stress-based approach to their fracture. Eng Fract Mech 44:75–89

    Article  Google Scholar 

  • Shih CF, Asaro RJ (1988) Elastic-plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. J Appl Mech 55:299–316

    Article  Google Scholar 

  • Shih CF, Asaro RJ (1989) Elastic-plastic analysis of cracks on bimaterial interfaces: part II—structure of small-scale yielding fields. J Appl Mech 56:763–779

    Article  Google Scholar 

  • Shih CF, Asaro RJ, O’Dowd NP (1991) Elastic-plastic analysis of cracks on bimaterial interfaces: part III—large-scale yielding. J Appl Mech 58:450–463

    Article  Google Scholar 

  • Sih GC, Rice JR (1964) The bending of plates of dissimilar materials with cracks. J Appl Mech 31:477–482

    Article  Google Scholar 

  • Swadener JG, Liechti KM (1998) Asymmetric shielding mechanisms in the mixed-mode fracture of a glass/epoxy interface. J Appl Mech 65:25–29

    Article  Google Scholar 

  • Swadener JG, Liechti KM, de Lozanne AL (1999) The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J Mech Phys Solids 47:223–258

    Article  Google Scholar 

  • Thurston ME, Zehnder AT (1993) Experimental determination of silica/copper interfacial toughness. Acta Metall Mater 41:2985–2992

    Article  Google Scholar 

  • Thurston ME, Zehnder AT (1996) Nickel-alumina interfacial fracture toughness: experiments and analysis of residual stress effects. Int J Fract 76:221–241

  • Wang J-S, Suo Z (1990) Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches. Acta Metall Mater 38:1279–1290

    Article  Google Scholar 

  • Wang J-S (1995) Interfacial fracture toughness of a copper/alumina system and the effect of the loading phase angle. Mech Mater 20:251–259

    Article  Google Scholar 

  • Whitmore GA (1986) Prediction limits for a univariate normal observation. Am Stat 40:141–143

    Google Scholar 

  • Williams ML (1959) The stresses around a fault or crack in dissimilar media. Bull Seismol Soc Am 49:199–204

    Google Scholar 

  • Yuuki R, Liu J-Q, Xu J-Q, Ohira T, Ono T (1994) Mixed mode fracture criteria for an interface crack. Eng Fract Mech 47:367–377

    Article  Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to all of my former students, as well as Rami Eliasi and Victor Fourman. There are many other people who have influenced the many directions that this work has taken. There are too many to name; but I thank them in anonymity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Banks-Sills.

Appendices

Appendix 1: Stress and displacement functions of the first term of the asymptotic expansion of an interface crack between two linear elastic, homogeneous and isotropic materials

The stress and displacement functions for the first term of the asymptotic expansion of an interface crack between two linear elastic, homogeneous and isotropic materials are presented here. For material (1), the upper material, the stress functions in Eq. (1) are

$$\begin{aligned}&_{1}\varSigma _{11}^{(1)}(\theta ,\varepsilon )\nonumber \\&\quad = -\frac{1}{\cosh \pi \varepsilon }\left\{ \left[ \sinh (\pi - \theta )\varepsilon - e^{-(\pi - \theta )\varepsilon }\right] \cos \frac{\theta }{2}\right. \nonumber \\&\qquad \left. +\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \sin \frac{3\theta }{2} - 2\varepsilon \cos \frac{3\theta }{2} \right] \right\} \end{aligned}$$
(49)
$$\begin{aligned}&_{1}\varSigma _{12}^{(1)}(\theta ,\varepsilon )\nonumber \\&\quad = -\frac{1}{\cosh \pi \varepsilon }\left\{ \sinh (\pi - \theta )\varepsilon \;\sin \frac{\theta }{2} \right. \nonumber \\&\qquad \left. -\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \cos \frac{3\theta }{2} + 2\varepsilon \sin \frac{3\theta }{2} \right] \right\} \end{aligned}$$
(50)
$$\begin{aligned}&_{1}\varSigma _{22}^{(1)}(\theta ,\varepsilon ) \nonumber \\&\quad = \frac{1}{\cosh \pi \varepsilon }\left\{ \left[ \sinh (\pi - \theta )\varepsilon + e^{-(\pi - \theta )\varepsilon }\right] \cos \frac{\theta }{2}\right. \nonumber \\&\qquad \left. +\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \sin \frac{3\theta }{2} - 2\varepsilon \cos \frac{3\theta }{2} \right] \right\} \end{aligned}$$
(51)
$$\begin{aligned}&_{1}\varSigma _{11}^{(2)}(\theta ,\varepsilon ) \nonumber \\&\quad = -\frac{1}{\cosh \pi \varepsilon }\left\{ \left[ \cosh (\pi - \theta )\varepsilon +e^{-(\pi - \theta )\varepsilon }\right] \sin \frac{\theta }{2}\right. \nonumber \\&\qquad \left. +\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \cos \frac{3\theta }{2} + 2\varepsilon \sin \frac{3\theta }{2} \right] \right\} \end{aligned}$$
(52)
$$\begin{aligned}&_{1}\varSigma _{12}^{(2)}(\theta ,\varepsilon ) \nonumber \\&\quad = \frac{1}{\cosh \pi \varepsilon }\left\{ \cosh (\pi - \theta )\varepsilon \;\cos \frac{\theta }{2}\right. \nonumber \\&\qquad \left. -\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \sin \frac{3\theta }{2} - 2\varepsilon \cos \frac{3\theta }{2} \right] \right\} \end{aligned}$$
(53)
$$\begin{aligned}&_1\varSigma _{22}^{(2)}(\theta ,\varepsilon ) \nonumber \\&\quad = \frac{1}{\cosh \pi \varepsilon }\left\{ \left[ \cosh (\pi - \theta )\varepsilon - e^{-(\pi - \theta )\varepsilon }\right] \sin \frac{\theta }{2}\right. \nonumber \\&\qquad \left. +\, \frac{1}{2} e^{-(\pi - \theta )\varepsilon }\sin \theta \left[ \cos \frac{3\theta }{2} + 2\varepsilon \sin \frac{3\theta }{2} \right] \right\} . \end{aligned}$$
(54)

For the upper material, the out-of-plane stress functions in Eqs. (5) are given by

$$\begin{aligned} _1\varSigma _{31}^{(III)}(\theta )&= -\sin \frac{\theta }{2}\end{aligned}$$
(55)
$$\begin{aligned} _1\varSigma _{32}^{(III)}(\theta )&= \cos \frac{\theta }{2}. \end{aligned}$$
(56)

For material (1), the upper material, the displacement functions in Eq. (6) are given by

$$\begin{aligned} _{1}U_1^{(1)}&= -\frac{1}{\mu _1 (1 + 4\varepsilon ^2) \cosh \pi \varepsilon } \left\{ \left[ \sinh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. - \frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon }\right] \cos \frac{\theta }{2} -\,\frac{1}{2}(1 + 4\varepsilon ^2)\right. \nonumber \\&\quad \left. \times \, e^{-(\pi - \theta )\varepsilon } \sin \theta \sin \frac{\theta }{2} + 2\varepsilon \left[ \cosh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. +\, \frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon } \right] \sin \frac{\theta }{2} \right\} \end{aligned}$$
(57)
$$\begin{aligned} _{1}U_2^{(1)}&= \frac{1}{\mu _1 (1 + 4\varepsilon ^2) \cosh \pi \varepsilon } \left\{ \left[ \cosh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. +\,\frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon }\right] \sin \frac{\theta }{2} -\frac{1}{2}(1 + 4\varepsilon ^2)\right. \nonumber \\&\quad \left. \times \, e^{-(\pi - \theta )\varepsilon } \sin \theta \cos \frac{\theta }{2} - 2\varepsilon \left[ \sinh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. -\, \frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon } \right] \cos \frac{\theta }{2} \right\} \end{aligned}$$
(58)
$$\begin{aligned} _{1}U_1^{(2)}&= \frac{1}{\mu _1 (1 + 4\varepsilon ^2) \cosh \pi \varepsilon } \left\{ \left[ \cosh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. +\,\frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon }\right] \sin \frac{\theta }{2}+ \frac{1}{2}(1 + 4\varepsilon ^2)\right. \nonumber \\&\quad \left. \times \, e^{-(\pi - \theta )\varepsilon } \sin \theta \cos \frac{\theta }{2} - 2\varepsilon \left[ \sinh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. -\, \frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon } \right] \cos \frac{\theta }{2} \right\} \end{aligned}$$
(59)
$$\begin{aligned} _{1}U_2^{(2)}&= \frac{1}{\mu _1 (1 + 4\varepsilon ^2) \cosh \pi \varepsilon } \left\{ \left[ \sinh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. -\,\frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon }\right] \cos \frac{\theta }{2} +\frac{1}{2}(1 + 4\varepsilon ^2)\right. \nonumber \\&\quad \left. \times \, e^{-(\pi - \theta )\varepsilon } \sin \theta \sin \frac{\theta }{2} + 2\varepsilon \left[ \cosh (\pi - \theta )\varepsilon \right. \right. \nonumber \\&\quad \left. \left. +\, \frac{\kappa _1 - 1}{2} e^{-(\pi - \theta )\varepsilon } \right] \sin \frac{\theta }{2} \right\} . \end{aligned}$$
(60)

where \(\mu _1\) is the shear modulus of the upper material and \(\kappa _1\) is defined in Eq. (4). For the upper material, the out-of-plane displacement in Eq. (7) is given by

$$\begin{aligned} _1U_3^{(III)} = \frac{2}{\mu _1} \sin \frac{\theta }{2} . \end{aligned}$$
(61)

For material (2), the lower material, replace \(\pi \) with \(-\pi \) in Eqs. (49)–(54) and (57)–(60). In addition, replace \(\mu _1\) by \(\mu _2\) and \(\kappa _1\) by \(\kappa _2\) in Eqs. (57)–(61).

Appendix 2: Stress and displacement functions of the first term of the asymptotic expansion for an interface delamination of a \(0^{\circ }/90^{\circ }\) laminate for mode III

In this Appendix, the stress functions \(_k\varSigma _{\alpha 3}^{(III)}(\theta )\) in Eq. (5) and the displacement functions \(_kU_{3}^{(III)}(\theta )\) in Eq. (7) are presented. For the upper material (fibers in the \(0^{\circ }\)-direction)

$$\begin{aligned} _1 \varSigma _{13}^{(III)}&= -\frac{\beta _3}{B_3^{1/4}} \sin \frac{\phi _3}{2} \end{aligned}$$
(62)
$$\begin{aligned} _{1} \varSigma _{23}^{(III)}&= \frac{1}{B_3^{1/4}} \cos \frac{\phi _3}{2}\end{aligned}$$
(63)
$$\begin{aligned} _{1} U_3^{(III)}&= \frac{2 B_3^{1/4}}{\beta _3 G_T} \sin \frac{\phi _3}{2} \end{aligned}$$
(64)

where the third eigenvalue of the constitutive equations is \(p_3 = \beta _3 i\),

$$\begin{aligned} B_3 = \cos ^2 \theta + \beta _3^2 \sin ^2 \theta \end{aligned}$$
(65)

and

$$\begin{aligned} \phi _3 = \arctan \left( \beta _3 \tan \theta \right) . \end{aligned}$$
(66)

For the lower material (fibers in the \(90^{\circ }\)-direction),

$$\begin{aligned} _2 \varSigma _{13}^{(III)}&= -\sin \frac{\theta }{2} \end{aligned}$$
(67)
$$\begin{aligned} _{2} \varSigma _{23}^{(III)}&= \cos \frac{\theta }{2} \end{aligned}$$
(68)
$$\begin{aligned} _{2} U_{3}^{(III)}&= \frac{2}{G_A} \sin \frac{\theta }{2}. \end{aligned}$$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks-Sills, L. Interface fracture mechanics: theory and experiment. Int J Fract 191, 131–146 (2015). https://doi.org/10.1007/s10704-015-9997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-9997-1

Keywords

Navigation