Skip to main content
Log in

Beyond the Born Rule in Quantum Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We have recently developed a new understanding of probability in quantum gravity. In this paper we provide an overview of this new approach and its implications. Adopting the de Broglie–Bohm pilot-wave formulation of quantum physics, we argue that there is no Born rule at the fundamental level of quantum gravity with a non-normalisable Wheeler–DeWitt wave functional \(\Psi\). Instead the universe is in a perpetual state of quantum nonequilibrium with a probability density \(P\ne \left| \Psi \right| ^{2}\). Dynamical relaxation to the Born rule can occur only after the early universe has emerged into a semiclassical or Schrödinger approximation, with a time-dependent and normalisable wave functional \(\psi\), for non-gravitational systems on a classical spacetime background. In that regime the probability density \(\rho\) can relax towards \(\left| \psi \right| ^{2}\) (on a coarse-grained level). Thus the pilot-wave theory of gravitation supports the hypothesis of primordial quantum nonequilibrium, with relaxation to the Born rule taking place soon after the big bang. We also show that quantum-gravitational corrections to the Schrödinger approximation allow quantum nonequilibrium \(\rho \ne \left| \psi \right| ^{2}\) to be created from a prior equilibrium (\(\rho =\left| \psi \right| ^{2}\)) state. Such effects are very tiny and difficult to observe in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By de Broglie’s own account his ideas originated in a paper of 1922 on blackbody radiation, although his first paper on pilot-wave theory proper did not appear until 1923, culminating in his theory of a many-body system presented at the 1927 Solvay conference (see Ref. [2, Chap. 2]).

  2. In this paper we employ the traditional metric representation of the gravitational field. We expect similar conclusions to hold in loop quantum gravity [46].

  3. As we will see there is also a constraint on \(\Psi\) guaranteeing coordinate invariance.

  4. For a recent review see Ref. [61].

  5. For a ‘functional’ \(\Psi [\phi ]\) (mapping a function \(\phi (x)\) to a complex number \(\Psi\)) the functional derivative \(\delta \Psi /\delta \phi (x)\) at a spatial point x is defined by \(\delta \Psi =\int d^{3}x\,\left[ \delta \Psi /\delta \phi (x)\right] \delta \phi (x)\) for arbitrary infinitesimal variations \(\delta \phi (x)\).

  6. Here \(dx^{2}=(dx^{1})^{2}+(dx^{2} )^{2}+(dx^{3})^{2}\).

  7. The continuity equation (25) can also be derived from Noether’s theorem as the local conservation law associated with a global phase symmetry \(\psi \rightarrow \psi e^{i\theta }\) on configuration space [85].

  8. We are assuming the wave function has a single component \(\psi\). The method can be readily extended to spin systems with multi-component wave functions [6].

  9. For \(N_{i}\ne 0\) there are additional terms \(D_{i}N_{j} +D_{j}N_{i}\) on the right-hand side of (34).

  10. Specifically, with the ordering \((\delta /\delta g_{ij})G_{ijkl}(\delta /\delta g_{kl})\) in the kinetic term.

  11. For \(N_{i}\ne 0\) there is an additional term \(N^{i}\partial_{i}\phi\) on the right-hand side of (37).

  12. We might also append a constraint of the form (13) on P, to ensure that it is a function on the space of coordinate-independent 3-geometries. We can avoid this complication by simply working with one representation of the 3-geometry by one (coordinate-dependent) metric \(g_{ij}\).

  13. For a single particle with a static density \(\rho\) and a current \(\mathbf {j}\), this is analogous to summing the equations \(\partial_{x}j_{x}=\partial_{y}j_{y}=\partial_{z} j_{z}=0\) to yield \(\partial \rho /\partial t+\mathbf {\nabla }\cdot \mathbf {j}=0\).

  14. The same equations follow by identifying the canonical momenta (16) with a phase gradient.

  15. When \(s=0\) the exact H is constant but the coarse-grained value decreases (if there is no initial fine-grained structure) [16].

  16. This result is of course expected from the WKB form (49) (with \(\psi =\psi ^{(0)}\)).

  17. In an expanding cosmological background the ratio of \(i\hat{H}_{b}\) to \(\hat{H}_{a}\) is roughly of order \(\sim H/E\), where \(H=\dot{a}/a\) is the Hubble parameter and E is a typical energy for the field [64].

  18. For more details see Ref. [8].

  19. The creation of quantum nonequilibrium by evaporating black holes was previously suggested as a possible mechanism for resolving the information-loss puzzle [35, 63, 96, 101], but without a clear theoretical underpinning.

  20. A similar suggestion was made by Kiefer and Singh [64], who considered the effect of the Hermitian correction on atomic energy levels.

  21. In a remarkable reply to Ref. [26], Dürr and Struyve [104] invoke similar circular reasoning in their account of classical coin tossing.

References

  1. de Broglie, L.: La nouvelle dynamique des quanta, in: Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique (Gauthier-Villars, Paris, 1928). [English translation in ref. [2]]

  2. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009). arXiv:quant-ph/0609184

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Phys. Rev. 85, 180 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Holland, P.R.: The Quantum Theory of Motion: an Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  6. Valentini, A., Pearle, P., Saunders, S.: Three Roads to Quantum Reality: Pilot Waves, Dynamical Collapse, Many Worlds. Oxford University Press, Oxford (2023)

    Google Scholar 

  7. Valentini, A.: de Broglie–Bohm pilot-wave theory. In: Oxford Research Encyclopedia of Physics. Oxford University Press, Oxford (2023). https://oxfordre.com/physics

  8. Valentini, A.: Quantum gravity and quantum probability. arXiv:2104.07966

  9. Pauli, W.: in: Louis de Broglie: Physicien et Penseur. Albin Michel, Paris (1953)

    Google Scholar 

  10. Keller, J.B.: Bohm’s interpretation of the quantum theory in terms of ‘hidden’ variables. Phys. Rev. 89, 1040 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bohm, D.: Proof that probability density approaches \(\left|\psi \right|^{2}\) in causal interpretation of the quantum theory. Phys. Rev. 89, 458 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208 (1954)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Tumulka, R.: Bohmian mechanics. In: Knox, E., Wilson, A. (eds.) The Routledge Companion to the Philosophy of Physics. Routledge, New York (2021)

    Google Scholar 

  16. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156, 5 (1991)

    ADS  MathSciNet  Google Scholar 

  17. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. II. Phys. Lett. A 158, 1 (1991)

    ADS  MathSciNet  Google Scholar 

  18. Valentini, A.: On the pilot-wave theory of classical, quantum and subquantum physics. PhD thesis, International School for Advanced Studies, Trieste, Italy (1992). http://hdl.handle.net/20.500.11767/4334

  19. Valentini, A.: Pilot-wave theory of fields, gravitation and cosmology. In: Cushing, J.T., et al. (eds.) Bohmian Mechanics and Quantum Theory: an Appraisal. Kluwer, Dordrecht (1996)

    Google Scholar 

  20. Valentini, A.: Hidden variables, statistical mechanics and the early universe. In: Bricmont, J. et al. (eds.) Chance in Physics: Foundations and Perspectives. Springer, Berlin (2001). arXiv:quant-ph/0104067

  21. Valentini, A.: Signal-locality in hidden-variables theories. Phys. Lett. A 297, 273 (2002). arXiv:quant-ph/0106098

    ADS  MathSciNet  MATH  Google Scholar 

  22. Valentini, A.: Subquantum information and computation. Pramana-J. Phys. 59, 269 (2002). arXiv:quant-ph/0203049

    ADS  Google Scholar 

  23. Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. A 461, 253 (2005). arXiv:quant-ph/0403034

    ADS  MathSciNet  MATH  Google Scholar 

  24. Pearle, P., Valentini, A.: Quantum mechanics: generalizations. In: Françoise, J.-P. et al. (eds.) Encyclopaedia of Mathematical Physics. Elsevier, North-Holland, Amsterdam (2006). arXiv:quant-ph/0506115

  25. Valentini, A.: Beyond the quantum. Phys. World 22N11, 32 (2009). [arXiv:1001.2758]

  26. Valentini, A.: Foundations of statistical mechanics and the status of the Born rule in de Broglie–Bohm pilot-wave theory. In: Allori, V. (ed.) Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific, Singapore (2020). arXiv:1906.10761

  27. Efthymiopoulos, C., Contopoulos, G.: Chaos in Bohmian quantum mechanics. J. Phys. A Math. Gen. 39, 1819 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Towler, M.D., Russell, N.J., Valentini, A.: Time scales for dynamical relaxation to the Born rule. Proc. R. Soc. A 468, 990 (2012). [arXiv:1103.1589]

    ADS  MathSciNet  MATH  Google Scholar 

  29. Colin, S.: Relaxation to quantum equilibrium for Dirac fermions in the de Broglie–Bohm pilot-wave theory. Proc. R. Soc. A 468, 1116 (2012). [arXiv:1108.5496]

    ADS  MathSciNet  MATH  Google Scholar 

  30. Abraham, E., Colin, S., Valentini, A.: Long-time relaxation in pilot-wave theory. J. Phys. A Math. Theor. 47, 395306 (2014). [arXiv:1310.1899]

    MathSciNet  MATH  Google Scholar 

  31. Efthymiopoulos, C., Contopoulos, G., Tzemos, A.C.: Chaos in de Broglie–Bohm quantum mechanics and the dynamics of quantum relaxation, Ann. Fond. Louis de Broglie 42, 133 (2017). arXiv:1703.09810

  32. Drezet, A.: Justifying Born’s rule \(P_{\alpha }=\left|\Psi_{\alpha }\right|^{2}\) using deterministic chaos, decoherence, and the de Broglie–Bohm quantum theory, Entropy 23, 1371 (2021). arXiv:2109.09353

  33. Lustosa, F.B., Colin, S., Perez Bergliaffa, S.E.: Quantum relaxation in a system of harmonic oscillators with time-dependent coupling. Proc. R. Soc. A 477, 20200606 (2021). arXiv:2007.02939

  34. Lustosa, F.B., Pinto-Neto, N., Valentini, A.: Evolution of quantum nonequilibrium for coupled harmonic oscillators. arXiv:2205.13701

  35. Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A Math. Theor. 40, 3285 (2007). arXiv:hep-th/0610032

  36. Valentini, A.: de Broglie–Bohm prediction of quantum violations for cosmological super-Hubble modes. arXiv:0804.4656

  37. Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010). arXiv:0805.0163

  38. Colin, S., Valentini, A.: Mechanism for the suppression of quantum noise at large scales on expanding space. Phys. Rev. D 88, 103515 (2013). arXiv:1306.1579

  39. Colin, S., Valentini, A.: Primordial quantum nonequilibrium and large-scale cosmic anomalies. Phys. Rev. D 92, 043520 (2015). arXiv:1407.8262

  40. Valentini, A.: Statistical anisotropy and cosmological quantum relaxation. arXiv:1510.02523

  41. Colin, S., Valentini, A.: Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium, Int. J. Mod. Phys. D 25, 1650068 (2016). arXiv:1510.03508

  42. Underwood, N.G., Valentini, A.: Quantum field theory of relic nonequilibrium systems. Phys. Rev. D 92, 063531 (2015). arXiv:1409.6817

  43. Underwood, N. G., Valentini, A.: Anomalous spectral lines and relic quantum nonequilibrium, Phys. Rev. D 101, 043004 (2020). arXiv:1609.04576

  44. Albert, D.Z.: After Physics. Harvard University Press, Cambridge (2015)

    Google Scholar 

  45. Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Fall 2021 edn (2021). https://plato.stanford.edu/archives/fall2021/entries/qm-bohm/

  46. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  47. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)

    ADS  MATH  Google Scholar 

  48. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  49. Unruh, W.G., Wald, R.M.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40, 2598 (1989)

    ADS  MathSciNet  Google Scholar 

  50. Isham, C.J.: Conceptual and geometrical problems in quantum gravity. In: Mitter, H., Gausterer, H. (eds.) Recent Aspects of Quantum Fields. Springer, Berlin (1991)

    Google Scholar 

  51. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992) [Reprinted: Kuchař, K.V.: Int. J. Mod. Phys. D 20, 3 (2011)]

  52. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L. A., Rodriguez, M. A. (eds.) Integrable Systems, Quantum Groups, and Quantum Field Theories. Kluwer, London (1993). arXiv:gr-qc/9210011

  53. Kuchař, K.V.: The problem of time in quantum geometrodynamics. In: Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  54. Anderson, E.: The Problem of Time: Quantum Mechanics Versus General Relativity. Springer, Cham (2017)

    MATH  Google Scholar 

  55. Kiefer, C., Peter, P.: Time in quantum cosmology. Universe 8, 36 (2022). arXiv:2112.05788

  56. Vink, J.C.: Quantum potential interpretation of the wave function of the universe. Nucl. Phys. B 369, 707 (1992)

    ADS  MathSciNet  Google Scholar 

  57. Horiguchi, T.: Quantum potential interpretation of the Wheeler–DeWitt equation. Mod. Phys. Lett. A 9, 1429 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Shtanov, Yu.V.: Pilot wave quantum cosmology. Phys. Rev. D 54, 2564 (1996). arXiv:gr-qc/9503005

  59. Pinto-Neto, N.: The Bohm interpretation of quantum cosmology. Found. Phys. 35, 577 (2005). arXiv:gr-qc/0410117

  60. Pinto-Neto, N., Fabris, J.C.: Quantum cosmology from the de Broglie–Bohm perspective. Class. Quantum Grav. 30, 143001 (2013). arXiv:1306.0820

  61. Pinto-Neto, N.: The de Broglie–Bohm quantum theory and its application to quantum cosmology. Universe 7, 134 (2021). arXiv:2111.03057

  62. Dürr, D., Struyve, W.: Quantum Einstein equations. Class. Quantum Grav. 37, 135002 (2020). arXiv:2003.03839

  63. Valentini, A.: Trans-Planckian fluctuations and the stability of quantum mechanics. arXiv:1409.7467

  64. Kiefer, C., Singh, T.P.: Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067 (1991)

    ADS  MathSciNet  Google Scholar 

  65. Kiefer, C., Krämer, M.: Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum. Phys. Rev. Lett. 108, 021301 (2012). arXiv:1103.4967

  66. Bini, D., Esposito, G., Kiefer, C., Krämer, M., Pessina, F.: On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity. Phys. Rev. D 87, 104008 (2013). arXiv:1303.0531

  67. Brizuela, D., Kiefer, C., Krämer, M.: Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: the de Sitter case, Phys. Rev. D 93, 104035 (2016). arXiv:1511.05545

  68. Brizuela, D., Kiefer, C., Krämer, M.: Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: the slow-roll approximation. Phys. Rev. D 94, 123527 (2016). arXiv:1611.02932

  69. Kamenshchik, A.Y., Tronconi, A., Venturi, G.: Signatures of quantum gravity in a Born–Oppenheimer context. Phys. Lett. B 734, 72 (2014). arXiv:1403.2961

  70. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  71. Hawking, S.W.: The quantum state of the universe. Nucl. Phys. B 239, 257 (1984)

    ADS  MathSciNet  Google Scholar 

  72. Hawking, S.W., Page, D.: Operator ordering and the flatness of the universe. Nucl. Phys. B 264, 185 (1986)

    ADS  MathSciNet  Google Scholar 

  73. Hawking, S.W., Page, D.: How probable is inflation? Nucl. Phys. B 298, 789 (1988)

    ADS  MathSciNet  Google Scholar 

  74. Wheeler, J.A.: Superpsace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

  75. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 2638 (1990)

    ADS  Google Scholar 

  76. Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442 (1991)

    ADS  MathSciNet  Google Scholar 

  77. Rovelli, C.: Forget time, FQXi Essay on the Nature of Time (2009). arXiv:0903.3832

  78. Barbour, J.B.: The timelessness of quantum gravity. I. The evidence from the classical theory. Class. Quantum Grav. 11, 2853 (1994)

    ADS  MathSciNet  Google Scholar 

  79. Barbour, J.B.: The timelessness of quantum gravity. II. The appearance of dynamics in static configurations. Class. Quantum Grav. 11, 2875 (1994)

    ADS  MathSciNet  Google Scholar 

  80. Halliwell, J.J.: Trajectories for the wave function of the universe from a simple detector model. Phys. Rev. D 64, 044008 (2001). [arXiv:gr-qc/0008046]

    ADS  Google Scholar 

  81. Halliwell, J.J.: Probabilities in quantum cosmological models: a decoherent histories analysis using a complex potential. Phys. Rev. D 80, 124032 (2009). arXiv:0909.2597

  82. Halliwell, J.J.: Decoherent histories analysis of minisuperspace quantum cosmology, J. Phys.: Conf. Ser. 306, 012023 (2011). arXiv:1108.5991

  83. Hellmann, F., Mondragon, M., Perez, A., Rovelli, C.: Multiple-event probability in general-relativistic quantum mechanics. Phys. Rev. D 75, 084033 (2007). arXiv:gr-qc/0610140

  84. Mondragon, M., Perez, A., Rovelli, C.: Multiple-event probability in general-relativistic quantum mechanics: a discrete model. Phys. Rev. D 76, 064005 (2007). arXiv:0705.0006

  85. Struyve, W., Valentini, A.: de Broglie–Bohm guidance equations for arbitrary Hamiltonians. J. Phys. A Math. Theor. 42, 035301 (2009). arXiv:0808.0290

  86. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  87. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  88. Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, Oxford (2009)

    Google Scholar 

  89. Aghanim, N., et al. (Planck Collaboration): Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys. 594, A11 (2016)

  90. Vitenti, S., Peter, P., Valentini, A.: Modeling the large-scale power deficit with smooth and discontinuous primordial spectra, Phys. Rev. D 100, 043506 (2019). arXiv:1901.08885

  91. Valentini, A.: Hidden variables and the large-scale structure of space–time. In: Craig, W.L., Smith, Q. (eds.) Einstein, Relativity and Absolute Simultaneity. Routledge, London (2008). arXiv:quant-ph/0504011

  92. Pinto-Neto, N., Sergio Santini, E.: The consistency of causal quantum geometrodynamics and quantum field theory. Gen. Rel. Grav. 34, 505 (2002). arXiv:gr-qc/0009080

  93. Valentini, A.: On Galilean and Lorentz invariance in pilot-wave dynamics. Phys. Lett. A 228, 215 (1997). arXiv:0812.4941

  94. Zeh, H.D.: Time in quantum gravity. Phys. Lett. A 126, 311 (1988)

    ADS  Google Scholar 

  95. Kiefer, C., Wichmann, D.: Semiclassical approximation of the Wheeler–DeWitt equation: arbitrary orders and the question of unitarity. Gen. Relativ. Gravit. 50, 66 (2018). arXiv:1802.01422

  96. Valentini, A.: Black holes, information loss, and hidden variables. arXiv:hep-th/0407032

  97. Kandhadai, A., Valentini, A.: Perturbations and quantum relaxation. Found. Phys. 49, 1 (2019). [arXiv:1609.04485]

  98. Kiefer, C., Müller, R., Singh, T.P.: Quantum gravity and non-unitarity in black hole evaporation. Mod. Phys. Lett. A 9, 2661 (1994). arXiv:gr-qc/9308024

  99. DeWitt, B.S.: Quantum field theory in curved spacetime. Phys. Rep. 19, 295 (1975)

    ADS  Google Scholar 

  100. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  101. Kandhadai, A., Valentini, A.: Mechanism for nonlocal information flow from black holes, Int. J. Mod. Phys. A 35, 2050031 (2020). arXiv:191205374v1

  102. Valentini, A.: Universal signature of non-quantum systems. Phys. Lett. A 332, 187 (2004). arXiv:quant-ph/0309107

  103. Carr, B., Kuhnel, F., Sandstad, M.: Primordial black holes as dark matter, Phys. Rev. D 94, 083504 (2016). arXiv:1607.06077

  104. Dürr, D., Struyve, W.: Typicality in the foundations of statistical physics and Born’s rule. In: Allori, V. et al. (eds.) Do Wave Functions Jump? Springer, Cham (2021). arXiv:1910.08049

  105. Brush, S.G.: John James Waterston and the kinetic theory of gases. Am. Sci. 49, 202 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Valentini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentini, A. Beyond the Born Rule in Quantum Gravity. Found Phys 53, 6 (2023). https://doi.org/10.1007/s10701-022-00635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00635-0

Keywords

Navigation