Skip to main content
Log in

A Relational Time-Symmetric Framework for Analyzing the Quantum Computational Speedup

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The usual representation of quantum algorithms is limited to the process of solving the problem. We extend it to the process of setting the problem. Bob, the problem setter, selects a problem-setting by the initial measurement. Alice, the problem solver, unitarily computes the corresponding solution and reads it by the final measurement. This simple extension creates a new perspective from which to see the quantum algorithm. First, it highlights the relevance of time-symmetric quantum mechanics to quantum computation: the problem-setting and problem solution, in their quantum version, constitute pre- and post-selection, hence the process as a whole is bound to be affected by both boundary conditions. Second, it forces us to enter into relational quantum mechanics. There must be a representation of the quantum algorithm with respect to Bob, and another one with respect to Alice, from whom the outcome of the initial measurement, specifying the setting and thus the solution of the problem, must be concealed. Time-symmetrizing the quantum algorithm to take into account both boundary conditions leaves the representation to Bob unaltered. It shows that the representation to Alice is a sum over histories in each of which she remains shielded from the information coming to her from the initial measurement, not from that coming to her backwards in time from the final measurement. In retrospect, all is as if she knew in advance, before performing her problem-solving action, half of the information that specifies the solution of the problem she will read in the future and could use this information to reach the solution with fewer computation steps (oracle queries). This elucidates the quantum computational speedup in all the quantum algorithms examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the term classical algorithm instead of just algorithm, i.e. Turing machine, to avoid confusion with the term quantum algorithm. However, with this, we do not intend to make any comparison between quantum and classical physics. Here it is quantum physics and classical logic that face each other.

  2. By the way, being from \(\left\{ 0 ,1\right\} ^{n} \rightarrow \left\{ 0 ,1\right\} ^{n -1}\), the functions in question have just two periods.

  3. It is anyhow almost optimal. in fact a \({\hbox {O}} \left( n\right) \) increase in the number of function evaluations does not affect the exponential character of the speedup.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)

  2. Mosca, M., Ekert, A.K.: The hidden subgroup problem and Eigen value estimation on a Quantum Computer. Lecture Notes in Computer Science, vol. 1509 (1999)

    Chapter  Google Scholar 

  3. Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv:1712.06349 (2017)

  4. Jozsa, R.: Entanglement and quantum computation. Geometric issues in the foundations of science, Oxford University Press. arXiv:quant-ph/9707034 (1997)

  5. Ekert, A.K., Jozsa, R.: Quantum algorithms: Entanglement enhanced information processing. arXiv:quant-ph/9803072 (1998)

  6. Vedral, V.: The elusive source of quantum effectiveness. Found. Phys. 40(8), 1141–1154 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aaronson, S., Ambainis, A.: Forrelation: a problem that optimally separates quantum from classical computing. arXiv:1411.5729 (2014)

  8. Castagnoli, G., Finkelstein, D.R.: Theory of the quantum speedup. Proc. R. Soc. A 1799(457), 1799–1807 (2001)

    Article  ADS  Google Scholar 

  9. Castagnoli, G.: The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up. Phys. Rev. A 82, 052334 (2010)

    Article  ADS  Google Scholar 

  10. Castagnoli, G.: Completing the physical representation of quantum algorithms provides a quantitative explanation of their computational speedup. Found. Phys. 48, 333–354 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  12. De Beauregard, C.O.: The 1927 Einstein and 1935 EPR paradox. Phys. A 2, 211–242 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Dolev, S., Elitzur, A.C.: Non-sequential behavior of the wave function. arXiv:quant-ph/0102109 v1 (2001)

  14. Elitzur, A.C., Cohen, E.: Quantum oblivion: a master key for many quantum riddles. Int. J. Quant. Inf. 12, 1560024 (2015)

    Article  MathSciNet  Google Scholar 

  15. Elitzur, A.C., Cohen, E.: 1-1 = Counterfactual: on the potency and significance of quantum non-events. Phil. Trans. R. Soc. A 374, 20150242 (2016)

    Article  ADS  Google Scholar 

  16. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)

    Article  ADS  Google Scholar 

  17. Watanabe, S.: Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27(2), 179–186 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  18. Aharonov, Y., Bergman, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, 1410–1416 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. Cramer, J.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes. Wiley-VCH, Weinheim (2005)

    Book  Google Scholar 

  21. Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. Lect. Notes Phys. 734, 399–447 (2008)

    Article  ADS  Google Scholar 

  22. Aharonov, Y., Colombo, F., Popescu, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Quantum violation of the pigeonhole principle and the nature of quantum correlations. Proc. Natl. Acad. Sci. USA 113, 532–535 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Aharonov, Y., Cohen, E., Landsberger, T.: The two-time interpretation and macroscopic time-reversibility. Entropy 19, 111 (2017)

    Article  ADS  Google Scholar 

  24. Aharonov, Y., Cohen, E., Tollaksen, J.: Completely top-down hierarchical structure in quantum mechanics. Proc. Natl. Acad. Sci. USA 115, 11730–11735 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Aharonov, Y., Cohen, E., Carmi, A., Elitzur, A.C.: Extraordinary interactions between light and matter determined by anomalous weak values. Proc. R. Soc. A 474, 20180030 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  27. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307–022314 (2001)

    Article  ADS  Google Scholar 

  28. Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quant. Inf. Proc. 12, 1897–1914 (2013)

    Article  MathSciNet  Google Scholar 

  29. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. Simon, D.: On the power of quantum computation. In: Proceedings of the 35th annual IEEE symposium on the foundations of computer science, pp. 116–123 (1994)

  31. Shor, P.: Algorithms for quantum computation: discrete log and factoring. In: Proceedings of the 35th annual IEEE symposium on the foundations of computer science, pp. 124–131 (1994)

  32. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing, pp. 146–147. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  33. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 637–658 (1996)

    Article  MathSciNet  Google Scholar 

  34. Rovelli, C.: Relational quantum mechanics. http://xxx.lanl.gov/pdf/quant-ph/9609002v2 (2011)

  35. Fuchs, C. A.: On participatory realism. arXiv:1601.04360v3 [quant-ph] (2016)

    Google Scholar 

  36. Fuchs, C. A.: QBism, the perimeter of quantum Bayesianism. arXiv:1003.5209v1 [quant-ph] (2010)

  37. Healey, R.: Quantum theory: a pragmatist approach. arXiv:1008.3896 (2010)

  38. Adlam, E.: Spooky action at a temporal distance. Entropy 20(1), 41 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Aharonov, Y., Cohen, E., Elitzur, A.C.: Can a future choice affect a past measurement outcome? Ann. Phys. 355, 258–268 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Aharonov, Y., Cohen, E., Shushi, T.: Accommodating retrocausality with free will. Quanta 5, 53–60 (2016)

    Article  MathSciNet  Google Scholar 

  41. Carmi, A., Cohen, E.: Relativistic independence bounds nonlocality. Sci. Adv. 5, eaav8370 (2019)

    Article  ADS  Google Scholar 

  42. Morikoshi, F.: Information-theoretic temporal Bell inequality and quantum computation. Phys. Rev. A 73, 052308 (2006)

    Article  ADS  Google Scholar 

  43. Finkelstein, D.R.: Space-time structure in high energy interactions. In: Gudehus, T., Kaiser, G., Perlmutter, A. (eds.) Conference on high energy interactions, Coral Gables (1968)

  44. Finkelstein, D.R.: Space-time code. Phys. Rev. 184, 1261 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  45. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  46. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982)

    Article  Google Scholar 

  47. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  48. Deutsch, D.: Quantum theory, the Church Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  49. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  50. Elitzur, A.C., Cohen, E., Okamoto, R., Takeuchi, S.: Nonlocal position changes of a photon revealed by quantum routers. Sci. Rep. 8, 7730 (2018)

    Article  ADS  Google Scholar 

  51. Cohen, E., Pollak, E.: Determination of weak values of quantum operators using only strong measurements. Phys. Rev. A 98, 042112 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems and signal processing, vol. 175, p. 8. New York (1984)

  53. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank Yakir Aharonov and David Ritz Finkelstein for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Castagnoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castagnoli, G., Cohen, E., Ekert, A.K. et al. A Relational Time-Symmetric Framework for Analyzing the Quantum Computational Speedup. Found Phys 49, 1200–1230 (2019). https://doi.org/10.1007/s10701-019-00300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00300-z

Keywords

Navigation