Skip to main content
Log in

Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review several no-go theorems attributed to Gisin and Hardy, Conway and Kochen purporting the impossibility of Lorentz-invariant deterministic hidden-variable model for explaining quantum nonlocality. Those theorems claim that the only known solution to escape the conclusions is either to accept a preferred reference frame or to abandon the hidden-variable program altogether. Here we present a different alternative based on a foliation dependent framework adapted to deterministic hidden variables. We analyse the impact of such an approach on Bohmian mechanics and show that retrocausation (that is future influencing the past) necessarily comes out without time-loop paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We emphasize that this does not contradict time-symmetry of the unitary evolution: it is indeed possible to describe univocally the wave function in the past knowing the quantum state in the future.

  2. In BM particle trajectories cannot cross in the configuration space: this play a key role in the deduction [27, 28].

  3. With these conventions \(C_\pm (x_\pm )\) and \(D_\pm (x_\pm )\) are defined after the wave packets already crossed the beam splitters.

  4. i.e., \(\int _{\varLambda _{D_+D_-}}d\lambda \rho (\lambda )=\frac{1}{12}\) with \(\rho (\lambda )\) the normalized density of probability for \(\lambda \): \(\int _\varLambda d\lambda \rho (\lambda )=1\).

  5. See also [40] for a teleogical Bohmian model which is in fact a particular case of Sutherland model for the EPR-Bell case.

  6. From the point of view of Lorentz transformations the relation between frames \({\mathscr {F}}\) and \({\mathscr {F}}''\) in Fig. 4a is similar to the relation existing between frames \({\mathscr {F}}\) and \({\mathscr {F}}'\) in Fig. 3a, b.

  7. For a deterministic dynamics we have imposed the conditional probability \(P(\alpha |\lambda ,\varPsi ,{\mathcal {F}}_0)=\delta _{F(\varPsi ,{\mathcal {F}}_0, \lambda ),\alpha }\) (with \(\delta _{i,j}\) a Kronecker symbol) which yields \(\sum _\alpha \alpha P(\alpha |\lambda ,\varPsi ,{\mathcal {F}}_0)=F(\varPsi ,{\mathcal {F}}_0, \lambda )\) and is taking one of the observable discrete value \(\alpha \) [49].

  8. In the sense that this cut-off is not an invariant concept and is defined using a preferred frame. Here, this preferred frame is contingent and associated with cosmological issues.

  9. Following Goldstein and Zanghì [24, 26] we emphasize that any theory can be made Lorentz invariant by introducing foliations and vectors like \(n_{{\mathcal {F}}_0}\). However, in the framework advocated here we do not want to introduce a material like absolute structure in space–time different from, let us say, the metric tensor. Instead, foliations are parts of the integration constants for determining particle paths in BM. An analogy is provided by the formally covariant generalization of Coulomb Gauge condition \(\varvec{\nabla }\cdot {\mathbf {A}}=0\) as \([\partial _\mu - n_\mu (n\partial )]A^\mu =0\) (with \(n^2=1\)) sometimes used in quantum field theory [50].

  10. We emphasize that our approach is also different from the one advocated by Dürr and coworkers in which the wavefunction of the Universe is used to define univocally a vector like \(\langle {\hat{P}}^\mu \rangle _\varPsi \) normal to the hyperplanes of the preferred foliation [25, 26].

  11. After this work was completed I found two other works developing related ideas [58, 59].

  12. We have \(\gamma _i^{\mu _{i}}=I\otimes \cdots \otimes \underbrace{\gamma ^{\mu _{i}}}_{i^{th.} place}\otimes \cdots \otimes I\) where \(\gamma ^{\mu _{i}}\) is the standard Dirac matrices. We also have \({\bar{\varPsi }}_N=\psi _N^\dagger \otimes _{i=1}^{i=N}\gamma _i^0\).

  13. We have \(t=(t''-v x'')/\sqrt{1-v^2}\) where \(v<1\) is the relative velocity between the frames and thus \(t_1=t_2=s\) implies \(t''_1=t''_2-v(X''_2-X''_1)\simeq t''_2-vL\).

  14. For \(\lambda \in \varLambda _{D_+D_-}\) we have \(P_{B}(D_+|\lambda )=P(D_+|D_-,\lambda )P(D_-|\lambda )+P(D_+|C_-,\lambda )P(C_-|\lambda )=1+0=1\) and \(P_{B'}(C_+|\lambda )=P(C_+|v'_-,\lambda )P(v'_-|\lambda )+P(C_+|u'_-,\lambda )P(u'_-|\lambda )=1+0=1\). The other probabilities are similarly obtained.

  15. A detailed analysis shows that \(P_{B}(C_+|\lambda )=P_{B'}(C_+|\lambda )\) and \(P_{B}(D_+|\lambda )=P_{B'}(D_+|\lambda )\) for any \(\lambda \in \varLambda \).

  16. For a functional \(G([ \phi (x)]_\varSigma )\) and a function f(x) we have \(\int _{\varSigma } d^3\sigma (x)f(x)\frac{\delta G([ \phi (x)]_\varSigma ) }{\delta _\varSigma \phi (x)}=\lim _{\varepsilon \rightarrow 0} \frac{ G([ \phi (x)+\varepsilon f(x)]_\varSigma )- G([ \phi (x)]_\varSigma )}{\varepsilon } \) with \(d^3\sigma (x)\) an elementary invariant hypersurface [25].

  17. We note that within our foliation dependent framework one could easily develop a generalization of the GRW stochastic spontaneous collapse [23] approach in a way different from Tumulka’s. For this purpose one could consider a stochastic choice of the foliation \({\mathcal {F}}_0\) which would actualize one foliation over a distribution \(dP({\mathcal {F}}_0)\). The rest of GRW [23] written in a given foliation \({\mathcal {F}}_0\) would be kept unchanged.

  18. the expression ‘serious Lorentz invariance appears in a paper by Bell published in 1984 and reprinted in [1], p. 180].

  19. As Bell wrote apparently separate parts of the world would be deeply and conspiratorially entangled, and our apparent free will would be entangled with them. [1], p. 154].

  20. Our description mathematically extends an earlier result by Valentini [5] (obtained with \(N=1\) in Eq. 32) but with a completely different physical interpretation since we don’t here advocate a preferred 3+1 foliation of space–time.

  21. Here we use the usual definition of the functional derivative: for a functional \(G([ \phi '(s,\xi )])\) and a function \(f(x)=f'(s,\xi )\) we have \(\int _{\varSigma } d^3\xi f'(s,\xi )\frac{\delta G([ \phi '(s,\xi )]) }{\delta \phi '(s,\xi )}=\lim _{\varepsilon \rightarrow 0} \frac{ G([ \phi '(s,\xi )+\varepsilon f'(s,\xi )])- G([ \phi '(s,\xi )])}{\varepsilon }\). This definition is different from the covariant one used in footnote 14 and involving the invariant elementary hypersurface \(d^3\sigma = d^3\xi \sqrt{-h}\). We have \(\frac{\delta G([ \phi (x)]_\varSigma ) }{\delta _\varSigma \phi (x)}=\frac{1}{\sqrt{-h}}\frac{\delta G([ \phi '(s,\xi )]) }{\delta \phi '(s,\xi )}.\)

  22. \(T^{\mu \nu }(x)\) satisfies the conservation law \(\partial _\mu T^{\mu \nu }=-\partial ^\nu {\mathcal {L}}|_{\phi ,\partial \phi }\) where the explicit derivative holds for the explicit x dependence in \({\mathcal {L}}\) in presence of external fields.

  23. Moreover, the Covariance of the dynamics is better appreciated when using the canonical momentum \(\hat{\pi _\varSigma '}=\frac{\hat{\varPi '}}{\sqrt{-h}}\) leading to the commutation relation \([\hat{\phi '}(x'),\hat{\pi _\varSigma '}(y')]=i\delta _\varSigma ^3(x,y)\) for \(x,y\in \varSigma \). \(\delta ^3_\varSigma (x,y)\) is a Dirac distribution such that for \(x,y\in \varSigma \) we have \(\delta ^3_\varSigma (x,y)=\delta ^3_\varSigma (y,x)=\frac{\delta ^3(\xi _x-\xi _y)}{\sqrt{-h(x')}}\) and therefore \(\int _\varSigma d^3\sigma f(x)\delta ^3_\varSigma (x,y)=f(y)\) if \(x\in \varSigma \).

  24. In Eq. 36 if \({\hat{A}}\) depends explicitly on s this label is not modified between the two pictures. This is is the case for the Hamiltonian density \({\mathcal {H}}_\varSigma (x)=T^{\mu \nu }(x)n_\mu (x) n_\nu (x)\).

References

  1. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    MATH  Google Scholar 

  4. Bell, J.S.: Unpublished interview by R. Weeber (1990)

  5. Valentini, A.: On the Pilot-Wave Theory of Classical, Quantum and Subquantum Physics. International School for Advanced Studies, Trieste (1992)

    Google Scholar 

  6. Davies, P.C., Brown, J.R.: The Ghost in the Atoms, Chaps. 3, 8, 9. Cambridge University Press, Cambridge (1986)

  7. Kyprianidis, A., Vigier, J.P.: Quantum action-at-a-distance: the mystery of Einstein–Podolsky–Rosen correlations. In: Selleri, F. (ed.) Quantum Mechanics Versus Local Realism. Springer, New York (1988)

    Google Scholar 

  8. Combourieu, M.-C., Vigier, J.P.: Absolute space-time and realism in Lorentz invariant interpretations of quantum mechanics. Phys. Lett. A 175, 269 (1993)

    ADS  Google Scholar 

  9. Dirac, P.M.: Is there an Aether? Nature 168, 906 (1951)

    ADS  MathSciNet  Google Scholar 

  10. Hardy, L.: Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Berndl, K., Goldstein, S.: Comment on “Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 780 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Cohen, O., Hiley, B.J.: Reexamining the assumption that elements of reality can be Lorentz invariant. Phys. Rev. A 52, 76 (1995)

    ADS  MathSciNet  Google Scholar 

  13. Hardy, L., Squires, E.J.: On the violation of Lorentz-invariance in deterministic hidden-variable interpretations of quantum mechanics. Phys. Lett. A 168, 169 (1992)

    ADS  MathSciNet  Google Scholar 

  14. Conway, J., Kochen, S.: The free will theorem. Found. Phys. 56, 1441 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Conway, J., Kochen, S.: The strong free will theorem. Not. Am. Math. Soc. 66, 226 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Gisin, N.: Impossiblity of covariant deterministic nonlocal hidden-variable extension of quantum theory. Phys. Rev. A 83, 020102(R) (2011)

    ADS  Google Scholar 

  17. Gisin, N.: The free will theorem, stochastic quantum dynamics and true becoming in relativistic quantum physics (2010). arxiv:1002.1392

  18. Blood, C.: Derivation of Bell’s locality condition from the relativity of simultaneity (2010). arxiv:1005.1656

  19. Tumulka, R.: Comment on “the free will theorem”. Found. Phys. 37, 186 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Conway, J., Kochen, S.: Reply to comments of Bassi, Ghirardi, and Tumulka on the free will theorem. Found. Phys. 37, 1643 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Goldstein, S., Tausk, D.V., Tumulka, R., Zanghi, N.: What does the free will theorem actually prove? (2009). arxiv:0905.4641v1

  22. Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 821 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Dürr, D., Goldstein, S., Münch-Berndl, K., Zanghì, N.: Hypersurface Bohm–Dirac models. Phys. Rev. A 60, 2729 (1999)

    ADS  Google Scholar 

  25. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic. Proc. R. Soc. A 470, 20130699 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Goldstein, S., Zanghì, N.: In: Albert, D., Ney, A. (eds.) The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press, New York (2012)

  27. Bricmont, J.: Making Sense of Quantum Mechanics, Chap. 5, pp. 162–169, Springer, Cham (2016)

    MATH  Google Scholar 

  28. Rice, D.A.: A geometric approach to nonlocality in the Bohm model of quantum mechanics. Am. J. Phys. 65, 144 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Münch-Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062 (1996)

    ADS  MathSciNet  Google Scholar 

  30. Bohm, D., Hiley, B.J.: On the relativistic invariance of a quantum theory based on beables. Found. Phys. 21, 243 (1991)

    ADS  MathSciNet  Google Scholar 

  31. Berkovitz, J.: On predictions in retro-causal interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 709 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Costa de Beauregard, O.: Une réponse à l’argument dirigé par Einstein, Podolsky et Rosen contre l’interprétation bohrienne des phénomènes quantiques. C. R. Acad. Sci. Paris 236, 1632 (1953)

  33. Costa de Beauregard, O.: Lorentz and CPT invariances and the Einstein–Podolsky–Rosen correlations. Phys. Rev. Lett 50, 867 (1983)

    ADS  Google Scholar 

  34. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    ADS  MathSciNet  Google Scholar 

  35. Aharonov, Y., Gruss, E.Y.: Two-time interpretation of quantum mechanics. e-print arXiv:quant-ph/0507269

  36. Argaman, N.: Bell’s theorem and the causal arrow of time. Am. J. Phys. 78, 1007 (2010)

    ADS  Google Scholar 

  37. Lazarovici, D.: A relativistic retrocausal model violating Bell’s inequality. Proc. R. Soc. A 471, 20140454 (2014)

    ADS  Google Scholar 

  38. Sutherland, R.I.: Causally symmetric Bohm model. Stud. Hist. Philos. Mod. Phys. 39, 782 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Sutherland, R.I.: Lagrangian description for particle interpretations of quantum mechanics: entangled many-particle case. Found. Phys. 47, 174 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Sen, I.: A local \(\psi \)-epistemic retrocausal hidden-variable model of Bell correlations with wavefunctions in physical space. Found. Phys. 49, 83 (2019)

    ADS  MATH  Google Scholar 

  41. Tumulka, R.: On Bohmian mechanics, particle creation, and relativistic space-time: happy 100th Birthday, David Bohm!. Entropy 20, 462 (2018)

    ADS  Google Scholar 

  42. Goldstein, S., Tumulka, R.: Opposite arrows of time can reconcile relativity and nonlocality. Class. Quant. Grav. 20, 557 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Squires, E.J.: A local hidden-variable theory that FAPP, agrees with quantum theory. Phys. Lett. A 178, 22 (1993)

    ADS  MathSciNet  Google Scholar 

  44. Horton, G., Dewdney, C.: Nonlocal, Lorentz-invariant, hidden variable interpretation of quantum mechanics. J. Phys. Math. Gen. 34, 9871 (2001)

    ADS  MATH  Google Scholar 

  45. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945)

    ADS  Google Scholar 

  46. Deckert, D.-A.: Electrodynamics Absorber Theory—A Mathematical Study. Der Andere Verlag, Uelvesüll (2010)

    Google Scholar 

  47. Sutherland, R.I.: A corollary to Bell’s theorem. Il Nuovo Cimento 88B, 114 (1985)

    ADS  MathSciNet  Google Scholar 

  48. Maudlin, T.: Quantum Non-locality and Relativity. Blackwell, Oxford (1994)

    Google Scholar 

  49. Drezet, A.: Comment on “A simple experiment to test Bell’s inequality”, J.-M. Vigoureux. Opt. Commun. 250, 370 (2005)

    ADS  Google Scholar 

  50. Rohrlich, F.: Classical Charged Particles. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  51. Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475 (2012)

    Google Scholar 

  52. Drezet, A.: On the reality of the quantum state. Int. J. Quantum Found. 1, 25 (2015)

    Google Scholar 

  53. Leifer, M.S.: Is the quantum state real? An extended review of \(\psi \)-ontology theorems. Quanta 3, 68 (2014)

    Google Scholar 

  54. Lam, V.: Primitive ontology and quantum field theory. Eur. J. Philos. Sci. 5, 387 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Schweber, S.S.: QED and the Men Who Made It. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  56. Fleming, G., Bennett, H.: Hyperplane dependence in relativistic quantum mechanics. Found. Phys. 19, 231 (1989)

    ADS  MathSciNet  Google Scholar 

  57. Maudlin, T.: Space-time in the quantum world. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory an Appraisal, pp. 285–307. Kluwer, Dordrecht (1996)

    Google Scholar 

  58. Barrett, J.A.: Relativistic quantum mechanics through frame-dependent constructions. Philos. Sci. 72, 802 (2005)

    MathSciNet  Google Scholar 

  59. Galvan, B.: Relativistic Bohmian mechanics without a preferred foliation. J. Stat. Phys. 161, 1268 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Colin, S., Struyve, W.: A Dirac sea pilot-wave model for quantum field theory. J. Phys. A 40, 7309 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Lienert, M., Tumulka, R.: Born’s Rule for Arbitrary Cauchy Surfaces. e-print. arXiv:1706.07074v2

  62. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem II. Phys. Lett. A 158, 1 (1991)

    ADS  MathSciNet  Google Scholar 

  63. Ma, X.S., Koffer, J., Zeilinger, A.: Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016)

    ADS  Google Scholar 

  64. Holland, P.H.: The de Broglie–Bohm theory of motion and quantum field theory. Phys. Rep. 224, 95 (1993)

    ADS  MathSciNet  Google Scholar 

  65. Struyve, W.: Pilot-wave theory and quantum fields. Rep. Prog. Phys. 73, 106001 (2010)

    ADS  MathSciNet  Google Scholar 

  66. Horton, G., Dewdney, C.: A relativistically covariant version of Bohm’s quantum field theory for the scalar field. J. Phys. A 37, 11935 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Dürr, D., Goldstein, S., Zanghì, N.: On a realistic theory for quantum physics. In: Albeverio, S., Casati, G., Cattaneo, U., Merlini, D. (eds.) Stochastic Processes, Physics and Geometry, pp. 374–391. World Scientific, Singapore (1990)

    Google Scholar 

  68. Dewdney, C., Horton, G., Lam, M.M., Malik, Z., Schmidt, M.: Wave-particle dualism and the interpretation of quantum mechanics. Found. Phys. 22, 1217 (1992)

    ADS  MathSciNet  Google Scholar 

  69. Struyve, W.: Pilot-wave approaches to quantum field theory. J. Phys. Conf. Ser. 306, 012047 (2011)

    Google Scholar 

  70. Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Are all particles real? Stud. Hist. Philos. Mod. Phys. 36, 103 (2005)

    MathSciNet  MATH  Google Scholar 

  71. Long, D.V., Shore, G.M.: The Schrödinger wave functional and vacuum states in curved spacetime. Nucl. Phys. B 530, 247 (1998)

    ADS  MATH  Google Scholar 

  72. Arnowitt, R., Deser, S., Misner, C.: Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Hatfield, B.: Quantum Field Theory of Point Particles and Strings. Addison-Wesley, Redwood City (1992)

    MATH  Google Scholar 

  74. Doplicher, L.: Generalized Tomonaga–Schwinger equation from the Hadamard formula. Phys. Rev. D. 70, 064037 (2004)

    ADS  MathSciNet  Google Scholar 

  75. Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Phys. 1, 27 (1946)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Matthews, P.T.: The generalized Schrödinger equation in the interaction representation. Phys. Rev. 75, 1270 (1949)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Cédric Poulain, Cyril Branciard, Vincent Lam, and Jean Bricmont for helpful discussions and comments. We acknowledge the precious help given by an anonymous referee concerning the role of serious Lorentz invariance. We also thank Stephanie Phaneuf, and Serge Huant for their help during the redaction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Drezet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Foliation Dependent Bohmian Ontology for Bosonic Quantum Fields

Appendix: A Foliation Dependent Bohmian Ontology for Bosonic Quantum Fields

We follow [71] and use the Schrödinger wave-functional picture.Footnote 20 For this purpose we consider in the Minkoswky flat space–time (as seen from a Lorentz frame with metric \(\eta _{\mu \nu }\)) the classical action \(S=\int d^4x {\mathcal {L}}(\phi (x),\partial \phi (x),x)\) for a real scalar field \(\phi (x)\). This action is equivalently analyzed using the curvilinear coordinate system \(x':=[s,\xi ^i]\) (\(i=1,2,3\)) with the transformation \(x^\mu =x^\mu (s,\xi ^i)\) defined such that s labels the leaves \(\varSigma (s)\in {\mathcal {F}}_0\).

Following the ADM formalism [72] we define a ‘lapse’ function \(N(x')\) and three tangential projections \(p^\mu _i\) such that

$$\begin{aligned} dx^\mu =Nn^\mu ds+p^\mu _id\xi ^i \end{aligned}$$
(32)

and \(p^\mu _in_\mu =0\) with \(n^\mu \) the vector normal to the leaf \(\varSigma (s)\) at point of coordinate \(x^\mu \) (we use our freedom in the choice of coordinates to cancel the ‘shift’ function \(N^i=0\) [71, 72]). With ADM notations we thus have \(\frac{\partial x^\mu }{\partial s}=N n^\mu \), \(\frac{\partial x^\mu }{\partial \xi ^i}=p^\mu _i\), \(\frac{\partial s}{\partial x^\mu }=\frac{n_\mu }{N}\) characterizing the coordinate transformation. Writing \(g'_{\mu \nu }\) the metric in the \(x'\) coordinate system we deduce \(g'_{00}=N^2\), \(g'_{0i}=g'_{i0}=0\), \(g'_{ij}=h_{ij}=\eta _{\mu \nu }p^\mu _i p^\nu _i\) and \(\sqrt{-g'}=N\sqrt{-h}\) with \(g'(x')\), and \(h'(x')\) the determinant of \(g'_{\mu \nu }\) and \(h_{ij}\) respectively.

The action S for the field \(\phi (x)=\phi '(s,\xi )\) reads now with \({\mathcal {L}}(\phi (x),\partial \phi (x),x)=\mathcal {L'}(\phi '(s,\xi ),\partial _s\phi '(s,\xi ),\nabla _i\phi '(s,\xi ),s,\xi )\):

$$\begin{aligned} S=\int dsd^3\xi N\sqrt{-h}\mathcal {L'}(\phi '(s,\xi ),\partial _s\phi '(s,\xi ),\nabla _i\phi '(s,\xi ),s,\xi ) \end{aligned}$$
(33)

with \(\nabla _i\) a short hand notation for \(\frac{\partial }{\partial \xi ^i}\), \(\nabla _i\phi '=p^\mu _i\partial _\mu \phi \) and \(\partial _s\phi '=N n^\mu \partial _\mu \phi \). Of course, Euler-Lagrange’s equation \(\partial _s(\sqrt{-g'}\frac{\partial \mathcal {L'}}{\partial \partial _s\phi '})+\nabla _i(\sqrt{-g'} \frac{\partial \mathcal {L'}}{\partial \nabla _i\phi '})=\sqrt{-g'}\frac{\partial \mathcal {L'}}{\partial \phi '}\) deduced from Eq. 33 is rigorously equivalent to \(\partial _\mu \frac{\partial {\mathcal {L}}}{\partial \partial _\mu \phi }=\frac{\partial {\mathcal {L}}}{\partial \phi }\) obtained in the x coordinate system in agreement with general relativistic covariance.

Writing \(S=\int dsL_{\varSigma (s)}\) we use a Legendre transformation to define the Hamiltonian as \(H_{\varSigma (s)}a=-L_{\varSigma (s)} +\int d^3\xi \varPi '\partial _s\phi '\) with \(\varPi '=\frac{\delta L_\varSigma }{\delta \phi '}=\sqrt{-g'}\frac{\partial \mathcal {L'}}{\partial \partial _s\phi '}=\sqrt{-h}\frac{\partial {\mathcal {L}}}{\partial \partial _\mu \phi }n_\mu \) the canonical momentum conjugate to \(\phi .\)Footnote 21 This entails

$$\begin{aligned} H_{\varSigma (s)}=\int d^3\xi N\sqrt{-h}(\frac{\partial \mathcal {L'}}{\partial \partial _s\phi '}\partial _s\phi '-\mathcal {L'})=\int _\varSigma d^3\sigma (x) N{\mathcal {H}}_\varSigma (x) \end{aligned}$$
(34)

with \(d^3\sigma = d^3\xi \sqrt{-h}\) and \({\mathcal {H}}_\varSigma (x)=\mathcal {H'}_\varSigma (x')\) a foliation dependent scalar energy density such that \({\mathcal {H}}_\varSigma =T^{\mu \nu }n_\mu n_\nu \) with \(T^{\mu \nu }=\frac{\partial {\mathcal {L}}}{\partial \partial _\mu \phi }\partial ^\nu \phi -\eta ^{\mu \nu }{\mathcal {L}}\) the full energy-momentum tensor.Footnote 22 In the Hamilton formalism we have explicitly \(\mathcal {H'}_\varSigma =\mathcal {H'}_\varSigma (\phi ',\pi '(s,\xi ),\nabla _i\phi ',x')\) where \(\pi '_\varSigma =\frac{\varPi '}{\sqrt{-h}}=\frac{\partial {\mathcal {L}}}{\partial \partial _\mu \phi }n_\mu \) is introduced for further convenience.

In order to quantize this theory we introduce the equal-time commutation relations \([\hat{\phi '}(s,\xi ),\hat{\phi '}(s,\xi ')]=0=[\hat{\varPi '}(s,\xi ),\hat{\varPi '}(s,\xi ')]=0\) and

$$\begin{aligned} {[}\hat{\phi '}(s,\xi ),\hat{\varPi '}(s,\xi ')]=i\delta ^3(\xi -\xi ') \end{aligned}$$
(35)

written in the generalized Heisenberg picture adapted to the foliation where s plays the role of a time parameter.Footnote 23 The relation with the Schrödinger picture involves an unitary transformation such that for any local operator in the Heisenberg picture \({\hat{A}}^{(H)}(x):={\hat{A}}([\hat{\phi '}(s,\xi ),\hat{\varPi '}(s,\xi )],s)\) it exists a Schrödinger representation \({\hat{A}}^{(S)}(x):= {\hat{A}}([\hat{\phi '}(s_{in},\xi ),\hat{\varPi '}(s_{in},\xi )],s)\)

$$\begin{aligned} {\hat{A}}^{(H)}(x)={\hat{U}}_{\varSigma (s),\varSigma _{in}(s_{in})}^{-1}{\hat{A}}^{(S)}(x){\hat{U}}_{\varSigma (s),\varSigma _{in}(s_{in})} \end{aligned}$$
(36)

where \(s_{in}\) labels an initial leaf \(\varSigma (s_{in})\in {\mathcal {F}}_0\).Footnote 24 The wave functional at time s (Schrödinger picture) is related to the one at time \(s_{in}\) (Heisenberg picture) by \(|\varPsi _{\varSigma (s)}\rangle ={\hat{U}}_{\varSigma (s),\varSigma _{in}(s_{in})}|\varPsi _{\varSigma _{in}(s_{in})}\rangle \) with the Schrödinger equation:

$$\begin{aligned} i\frac{d}{ds}|\varPsi _{\varSigma (s)}\rangle =\int _\varSigma d^3\sigma N\mathcal {{\hat{H}}'}_\varSigma (\hat{\phi '}(s_{in},\xi ),\nabla \hat{\phi '}(s_{in},\xi ),\frac{\hat{\varPi '}}{\sqrt{-h}}(s_{in},\xi ),s,\xi )|\varPsi _{\varSigma (s)}\rangle \nonumber \\ \end{aligned}$$
(37)

We emphasize that the Hamiltonian is here written in the Schrödinger picture.

To work with the Schrödinger functional representation we introduce the amplitude

$$\begin{aligned} \varPsi ([\phi '(\xi )],s)=\langle [\phi '(\xi )];s|\varPsi _{\varSigma _{in}(s_{in})}\rangle =\langle [\phi '(\xi )];s_{in}|\varPsi _{\varSigma (s)}\rangle \end{aligned}$$
(38)

with the eigenvectors condition \(\hat{\phi '}(s,\xi )|[\phi '(\xi )];s\rangle =\phi '(\xi )|[\phi '(\xi )];s\rangle \) and the evolution \(|[\phi '(\xi )];s\rangle ={\hat{U}}_{\varSigma (s),\varSigma _{in}(s_{in})}^{-1}|[\phi '(\xi )];s_{in}\rangle \). Furthermore, we have the representation

$$\begin{aligned} \langle [\phi '(\xi )];s_{in}|\hat{\varPi '}(\xi ,s_{in})|\varPsi (s)\rangle =-i\frac{\delta \varPsi ([\phi '(\xi )],s)}{\delta \phi '(\xi )} \end{aligned}$$
(39)

which yields

$$\begin{aligned} i\frac{\partial }{\partial s}\varPsi ([\phi '(\xi )],s)=\int _\varSigma d^3\sigma N\mathcal {\hat{H'}}_\varSigma (\phi '(\xi ),\nabla \phi '(\xi ),\frac{-i}{\sqrt{-h}}\frac{\delta }{\delta \phi '(\xi )},s,\xi )\varPsi ([\phi '(\xi )],s) \nonumber \\ \end{aligned}$$
(40)

Moreover, BM entails the introduction of field beables defined on \(\varSigma (s)\in {\mathcal {F}}_0\). The foliation dependent formalism advocated here imposes thus the beables \(\phi '(\xi ):=\phi '_{{\mathcal {F}}_0}(x')=\phi _{{\mathcal {F}}_0}(x)\) for points \(x\in \varSigma (s)\) and allows us to write

$$\begin{aligned} \varPsi ([\phi '(\xi )],s):=\varPsi ([\phi _{{\mathcal {F}}_0}(x)]_{\varSigma (s)}) \end{aligned}$$
(41)

The fundamental Schrödinger wave-functional equation reads now

$$\begin{aligned} i\frac{\partial }{\partial s}\varPsi ([\phi _{{\mathcal {F}}_0}]_{\varSigma (s)})=\int _\varSigma d^3\sigma N\mathcal {\hat{H'}}_\varSigma (\phi _{{\mathcal {F}}_0},\nabla \phi _{{\mathcal {F}}_0},-i\frac{\delta }{\delta _\varSigma \phi _{{\mathcal {F}}_0}},x')\varPsi ([\phi _{{\mathcal {F}}_0}]_{\varSigma (s)}) \nonumber \\ \end{aligned}$$
(42)

(see footnotes 14 for notations). As an example we consider the field described classically by the Lagrangian \({\mathcal {L}}=\frac{1}{2}\partial _\mu \phi \partial ^\mu \phi - V(\phi )\) leading to the quantum Hamiltonian density (in the Schrödinger representation) \(\mathcal {\hat{H'}}_\varSigma =\frac{\hat{\pi '}_\varSigma ^2}{2}-\frac{h^{ij}}{2}\nabla _i\hat{\phi '}\nabla _i\hat{\phi '}+V(\hat{\phi '})\). Eq. 42 entails

$$\begin{aligned} i\frac{\partial }{\partial s}\varPsi ([\phi _{{\mathcal {F}}_0}]_{\varSigma })=\int _\varSigma d^3\sigma N[\frac{-\delta ^2 }{2\delta _\varSigma \phi ^2_{{\mathcal {F}}_0}}-\frac{h^{ij}}{2}\nabla _i\phi _{{\mathcal {F}}_0}\nabla _i\phi _{{\mathcal {F}}_0}+V(\phi _{{\mathcal {F}}_0})]\varPsi ([\phi _{{\mathcal {F}}_0}]_{\varSigma }) \nonumber \\ \end{aligned}$$
(43)

The Madelung polar expansion \(\varPsi ([\phi _{{\mathcal {F}}_0}]_{\varSigma (s)})=R([\phi _{{\mathcal {F}}_0}]_{\varSigma (s)})e^{iS([\phi _{{\mathcal {F}}_0}]_{\varSigma (s)})}\) leads to the Bohmian Hamilton–Jacobi equation

$$\begin{aligned} -\frac{\partial }{\partial s}S=\int _\varSigma d^3\sigma N[\frac{1}{2}\left( \frac{\delta S }{\delta _\varSigma \phi _{{\mathcal {F}}_0}}\right) ^2-\frac{h^{ij}}{2}\nabla _i\phi _{{\mathcal {F}}_0}\nabla _i\phi _{{\mathcal {F}}_0}+V(\phi _{{\mathcal {F}}_0})]+Q_\varSigma \nonumber \\ \end{aligned}$$
(44)

involving the quantum potential \( Q_\varSigma =-\int _\varSigma d^3\sigma N\frac{1}{2R}\frac{\delta ^2 R }{\delta _\varSigma \phi ^2_{{\mathcal {F}}_0}}\), and the probability conservation

$$\begin{aligned} -\frac{\partial }{\partial s}R^2=\int _\varSigma d^3\sigma N \frac{\delta }{\delta _\varSigma \phi _{{\mathcal {F}}_0}}\left( R^2\frac{\delta S }{\delta _\varSigma \phi _{{\mathcal {F}}_0}}\right) \end{aligned}$$
(45)

from which we derive the probability conservation \(\int {\mathcal {D}}\phi _{{\mathcal {F}}_0}R^2(s)=1\) (\({\mathcal {D}}\phi _{{\mathcal {F}}_0}\) is a functional volume [73] defined in the configuration space at time s).

Most importantly, BM is driven by the guidance equation

$$\begin{aligned} \pi '_\varSigma =\frac{\delta S }{\delta _\varSigma \phi _{{\mathcal {F}}_0}(x)}=Im\left( \frac{1}{\varPsi }\frac{\delta \varPsi }{\delta _\varSigma \phi _{{\mathcal {F}}_0}(x)}\right) =n_{{\mathcal {F}}_0}^\mu (x)\partial _\mu \phi _{{\mathcal {F}}_0}(x)=\frac{\partial _s\phi _{{\mathcal {F}}_0}(x)}{N}\qquad \quad \end{aligned}$$
(46)

which is equivalent to Eq. 29 discussed in [25, 66, 67]. While BM is clearly a first-order dynamics we can yet deduce the Newton-like second-order differential equation by applying the functional derivative on both sides of Eq. 44. It yields:

$$\begin{aligned} \partial _\mu \partial ^\mu \phi _{{\mathcal {F}}_0}(x)= & {} \frac{1}{\sqrt{-g'}}\Bigg [\partial _s\Bigg (\frac{\sqrt{-h}}{N}\partial _s\phi '_{{\mathcal {F}}_0}(x')\Bigg )+\nabla _i(h^{ij}\nabla _j\phi '_{{\mathcal {F}}_0}(x'))\Bigg ]\nonumber \\= & {} -\frac{dV(\phi )}{d\phi }|_{\phi =\phi _{{\mathcal {F}}_0}(x)}-\frac{1}{N}\frac{\delta Q_\varSigma }{\delta _\varSigma \phi _{{\mathcal {F}}_0}(x)} \end{aligned}$$
(47)

which differs from the classical equation \(\partial _\mu \partial ^\mu \phi _{{\mathcal {F}}_0}(x)=-\frac{dV(\phi )}{d\phi }|_{\phi =\phi _{{\mathcal {F}}_0}(x)}\) by the introduction of a nonlocal and foliation dependent quantum force responsible for the ‘super-implicate order’ advocated by Bohm and Hiley [3].

We emphasize that while we actually picked up a specific foliation \({\mathcal {F}}_0\) for representing the Schrödinger wave-functional problem, the full structure is still entirely relativistically covariant. To see this, we introduce the general transformation \(|\varPsi _{\varSigma '}\rangle ={\hat{U}}_{\varSigma ',\varSigma }|\varPsi _{\varSigma }\rangle \) where \(\varSigma , \varSigma '\) do not necessarily belong to \({\mathcal {F}}_0\). Let \(x_\varSigma ^\mu \) be any point of \(\varSigma (s)\in {\mathcal {F}}_0\). We then define an infinitesimal variation of the surface \(\varSigma (s)\rightarrow \varSigma '\) by the transformation \(x_\varSigma ^\mu \rightarrow x_\varSigma ^\mu +\epsilon n^\mu (x_\varSigma )\) where \(\epsilon (\xi )\) is the infinitesimal and local amount of displacement normal to \(\varSigma \). The unitary infinitesimal transformation relating \(\varPsi ([\phi ]_{\varSigma '})\) and \(\varPsi ([\phi ]_{\varSigma (s)})\) leads to

$$\begin{aligned} \varPsi ([\phi ]_{\varSigma '})-\varPsi ([\phi ]_{\varSigma (s)})\simeq & {} -i\int _\varSigma d^3\sigma \epsilon \mathcal {\hat{H'}}_\varSigma (\phi ,\nabla \phi ,-i\frac{\delta }{\delta _\varSigma \phi },x')\varPsi ([\phi ]_{\varSigma (s)}) \nonumber \\= & {} \int _\varSigma d^3\sigma \epsilon \frac{\delta }{\delta \varSigma (x)}\varPsi ([\phi ]_{\varSigma (s)}) \end{aligned}$$
(48)

where we introduced in the second line the definition of Schwinger’s functional derivative \(\frac{\delta }{\delta \varSigma (x)}\varPsi ([\phi ]_{\varSigma (s)})\) [55, 74]. From this we deduce a multi-time Schwinger–Tomonaga equation [75] adapted to the Schrödinger–Heisenberg picture [76]

$$\begin{aligned} i\frac{\delta }{\delta \varSigma (x)}\varPsi ([\phi ]_{\varSigma })=\mathcal {\hat{H'}}_\varSigma (\phi ,\nabla \phi ,-i\frac{\delta }{\delta _\varSigma \phi },x')\varPsi ([\phi ]_{\varSigma }) \end{aligned}$$
(49)

which connects with the Bohmian description given in [25, 66, 67]. We emphasize that \([\mathcal {\hat{H'}}_\varSigma (x_1),\mathcal {\hat{H'}}_\varSigma (x_2)]=0\)\(\forall x_1,x_2\in \varSigma \) as it should be in this formalism [55, 75, 76].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drezet, A. Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables. Found Phys 49, 1166–1199 (2019). https://doi.org/10.1007/s10701-019-00297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00297-5

Keywords

Navigation