Skip to main content
Log in

A Bi-directional Big Bang/Crunch Universe within a Two-State-Vector Quantum Mechanics?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A two boundary quantum mechanics incorporating a big bang/big crunch universe is carefully considered. After a short motivation of the concept we address the central question how a proposed a-causal quantum universe can be consistent with what is known about macroscopia and how it might find experimental support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Early on [15] only advanced solutions were considered physically relevant introducing a time arrow. No time arrow and backward causation was—as far as I know—first considered in radiation-less action—at-a-distance theories by Tetrode [16]. Without the possibility of real photons in the final state assumptions about suitable absorber were needed to obtain unit absorption probabilities consistent with observations [8, 17, 18]. As such assumption can hold only approximately it implies some backward causation. In quantum field theory final states can contain photons and the emission probability no longer requires absorber and backward causation is no longer needed if all particles are distinct. Only the quantum statistical effect discussed introduces backward causation.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48(8), 696 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bopp, F.: Elementarvorgaenge der quantenmechanik in stochastischer sicht. Ann. Phys. 472(7–8), 407–414 (1966)

    Article  Google Scholar 

  4. Argaman, N.: Bell’s theorem and the causal arrow of time. Am. J. Phys. 78(10), 1007–1013 (2010)

    Article  ADS  Google Scholar 

  5. de Beauregard, O.C.: Méchanique quantique. C. R. Acad. Sci. 238 (1953)

  6. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58(3), 647 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Price, H.: Does time-symmetry imply retrocausality? How the quantum world says maybe? Stud. Hist. Philos. Sci. B 43(2), 75–83 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Süssmann, G.: Die spontane lichtemission in der unitären quantenelektrodynamik. Z. Phys. 131(4), 629–662 (1952)

    Article  ADS  MATH  Google Scholar 

  9. Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21(3), 425 (1949)

    Article  ADS  MATH  Google Scholar 

  10. Bopp, F.W.: Time symmetric quantum mechanics and causal classical physics. Found. Phys. 47(4), 490–504 (2017). https://doi.org/10.1007/s10701-017-0074-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hanbury Brown, R., Twiss, R.Q.: Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 300–324. The Royal Society (1957)

  12. Metzger, W.J., Novák, T., Csörgő, T., Kittel, W.: Bose–Einstein correlations and the tau-model. arXiv:1105.1660 (2011)

  13. Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics. World Scientific, Singapore (2005)

    Book  Google Scholar 

  14. Bopp, F.W.: Causal classical physics in time symmetric quantum mechanics. In: Proceedings of the 4th International Electronic Conference on Entropy and Its Applications, Basel, Switzerland, 2017. https://doi.org/10.3390/ecea-4-05010. http://inspirehep.net/record/1653462/files/1802.02090.pdf (2018)

  15. Ritz, W.: Über die grundlagen der elektrodynamik un die theorie der schwarzen strahlung. Phys. Z. 9, 903–907 (1908)

    MATH  Google Scholar 

  16. Tetrode, H.: Über den wirkungszusammenhang der welt. eine erweiterung der klassischen dynamik. Z. Phys. A 10(1), 317–328 (1922)

    Article  Google Scholar 

  17. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17(2–3), 157 (1945)

    Article  ADS  Google Scholar 

  19. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (2013)

    MATH  Google Scholar 

  20. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Aharonov, Y., Cohen, E., Shushi, T.: Accommodating Retrocausality with Free Will. arXiv:1512.06689 (2015)

  22. Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. Phys. Orig. Time Asymmetry 1, 311–345 (1994)

    ADS  Google Scholar 

  23. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  25. Vaidman, L.: Quantum theory and determinism. Quantum Stud. Math. Found. 1(1–2), 5–38 (2014). https://doi.org/10.1007/s40509-014-0008-4

    Article  MATH  Google Scholar 

  26. Wigner, E.P.: Remarks on the Mind Body Question, in “The Scientist Speculates”. Heinmann, London (1961)

    Google Scholar 

  27. Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, New York (2001)

    Book  MATH  Google Scholar 

  28. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(11), 113019 (2008)

    Article  ADS  Google Scholar 

  29. Balzer, C., Hannemann, T., Reiß, D., Wunderlich, C., Neuhauser, W., Toschek, P.E.: A relaxationless demonstration of the quantum zeno paradox on an individual atom. Opt. Commun. 211(1), 235–241 (2002)

    Article  ADS  Google Scholar 

  30. Block, E., Berman, P.R.: Quantum zeno effect and quantum zeno paradox in atomic physics. Phys. Rev. A 44(3), 1466 (1991)

    Article  ADS  Google Scholar 

  31. Yajnik, U.A.: Cosmology for particle physicists. In: 21st SERC School in Theoretical High Energy Physics Ahmedabad, India, February 11–March 3, 2006. http://inspirehep.net/record/740963/files/arXiv:0808.2236.pdf (2006)

  32. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Alfred A. Knopf Inc., New York (2005)

    MATH  Google Scholar 

  34. Gambini, R., Pullin, J.: The montevideo interpretation of quantum mechanics: a short review. Entropy 20, 413 (2018)

    Article  ADS  Google Scholar 

  35. Aharonov, Y., Cohen, E., Landsberger, T.: The two-time interpretation and macroscopic time-reversibility. Entropy 19(3), 111 (2017)

    Article  ADS  Google Scholar 

  36. Morita, K.: Einstein dilemma and two-state vector formalism. J. Quantum Inf. Sci. 5(02), 41 (2015)

    Article  Google Scholar 

  37. Aharonov, Y., Cohen, E., Elitzur, A.C.: Can a future choice affect a past measurement’s outcome? Ann. Phys. 355, 258–268 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. McCauley, J.L.: Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  39. Craig, D.A.: Observation of the final boundary condition: extragalactic background radiation and the time symmetry of the universe. Ann. Phys. 251(2), 384–425 (1996)

    Article  ADS  MATH  Google Scholar 

  40. Davies, P.C., Twamley, J.: Time-symmetric cosmology and the opacity of the future light cone. Class. Quantum Gravity 10(5), 931 (1993)

    Article  ADS  Google Scholar 

  41. van Tilburg, J.: Measurements of CPT violation at LHCb. In: Proceedings, 7th Meeting on CPT and Lorentz Symmetry (CPT 16): Bloomington, Indiana, USA, June 20–24, 2016, pp. 73–76. https://inspirehep.net/record/1475473/files/arXiv:1607.03620.pdf (2017)

  42. Bopp, F.W.: Novel ideas about emergent vacua. Acta Phys. Polon. B 42, 1917 (2011). https://doi.org/10.5506/APhysPolB.42.1917

    Article  Google Scholar 

  43. Bopp, F.W.: Novel ideas about emergent vacua and Higgs-like particles. Nucl. Phys. Proc. Suppl. 219–220, 259–262 (2011). https://doi.org/10.1016/j.nuclphysbps.2011.10.106

    Article  Google Scholar 

  44. Greenberg, O.W.: CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 89, 231602 (2002). https://doi.org/10.1103/PhysRevLett.89.231602

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank David Craig, Eliahu Cohen, José M. Isidro and Giacomo D’ariano for helpful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz W. Bopp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bopp, F.W. A Bi-directional Big Bang/Crunch Universe within a Two-State-Vector Quantum Mechanics?. Found Phys 49, 53–62 (2019). https://doi.org/10.1007/s10701-018-0230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0230-8

Keywords

Navigation