Skip to main content

Advertisement

Log in

Turing: The Great Unknown

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Turing was an exceptional mathematician with a peculiar and fascinating personality and yet he remains largely unknown. In fact, he might be considered the father of the von Neumann architecture computer and the pioneer of Artificial Intelligence. And all thanks to his machines; both those that Church called “Turing machines” and the a-, c-, o-, unorganized- and p-machines, which gave rise to evolutionary computations and genetic programming as well as connectionism and learning. This paper looks at all of these and at why he is such an often overlooked and misunderstood figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellare, M., & Rogaway, P. (1993). Random oracles are practical: A paradigm for designing efficient protocols. In Proceedings of the first ACM conference on computer and communications security.

  • Burks, A. W. (1980). From ENIAC to the stored-program computer: Two revolutions in computers. In N. Metripolis, J. Hovolett, & G. C. Rota (Eds.), A history of computing in the twentieth century. New York, NY: Academic Press.

    Google Scholar 

  • Church, A. (1937). Review of A. M. Turing ‘Proceedings of the London Mathematical Society’. The Journal of Symbolic Logic, 2, 42–43.

    Google Scholar 

  • Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280, 77–81.

    Article  Google Scholar 

  • Davey, M. (2010). A Turing machine. http://aturingmachine.com. Accessed December, 2018.

  • Eberbach, E., & Goldin, D. (2004). And Wegener, P.: Turing’s ideas and models of computation. In C. Teuscher (Ed.), Alan Turing: Life and legacy of a great thinker (pp. 154–194). Berlin: Springer.

    Google Scholar 

  • Farley, B. G., & Clark, W. A. (1954). Simulation of self-organizing systems by digital computer. IRE Transaction on Information Theory, 4, 76–84.

    Google Scholar 

  • Gandy, R. (1988). The confluence of ideas in 1936 (pp. 55–111). In Herken.

  • Gödel, K. (1929). On the completeness of the calculus of logic. Doctoral Dissertation. In Collected works, I (pp. 69–101). University of Vienna.

  • Gödel, K. (1931). Uber Formal Unentscheidbare Sätze der Principia Mathematica und VerWandter System I. Monatshefte fur Mathematik und Physik, 38, 173–198.

    Article  Google Scholar 

  • Hameroff, S. R., & Penrose, R. (1996). Conscious event as orchestrated space–time selections. Journal of Consciousness Studies, 3, 36–63.

    Google Scholar 

  • Hardy, G. H. (1928). Mathematical proof. Lecture in Rouse Ball.

  • Hilbert, D. (1900). Mathematische Probleme. Göttinger Nachrichten von der Königlichen. Gessllschaft der Wissenschaflen zu Göttingen, pp. 253–297.

  • Hilbert, D., & Ackermann, W. (1928). Grundzüge der theoretischen Logik. Berlin: Springer.

    Google Scholar 

  • Hodges, A. (1983). Alan Turing. The enigma of intelligence. London: Burnett Books Limited.

    Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge: MIT Press.

    Book  Google Scholar 

  • Lahoz-Beltrá, R. (2005). Turing. Del Primer Ordenador a la Inteligencia Artificial. Nivola Libros y Ediciones, S.A. Madrid, España.

  • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  Google Scholar 

  • Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its applications to the brain-model problem. Ph.D. thesis. Princeton University, Princeton, NJ.

  • Newman, M. (1946). Letter to von Neumann, 8 February, 1946. In The von Neumann archive at the library of congress. Washington D.C. A digital facsimile is in. http://www.AlanTuring.net//NewmanvonNeumann.8feb46. Accessed December, 2018.

  • Randell, B. (1972). On Alan Turing and the origins of digital computer. In B. Melzer & D. Michie (Eds.), Machine intelligence (Vol. 6). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: “A probabilistic model for information storage and organization in the brain”. Psychological Review, 65, 386–408.

    Article  Google Scholar 

  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3, 221–229.

    Article  Google Scholar 

  • Scarpellini, B. (2003). Comments on two undecidable problems of analysis. Mind and Machines, 13(1), 49–77.

    Article  Google Scholar 

  • Turing, A. M. (1937–1936). On computable numbers with an application to the Entscheidungs problem. In Proceedings of the London Mathematical Society. Series 2 (Vol. 42, pp. 230–264) (Corrections: Ibid. 43, pp. 544–546).

  • Turing, A. M. (1939). Systems of logic based on ordinals. Ph D. Thesis. Princeton University. Princeton, NJ, 1938. Also, in Proceedings of the London Mathematical Society. Series 2 (Vol. 45, pp. 161–228). London, U.K.

  • Turing, A. M. (1945). Proposal for development in the mathematics division of an automatic computing engine (ACE). In B. E. Carpenter, & R. W. Doran (Eds.), A. M. Turing’s ACE report of 1946 and other papers. Cambridge, MA: The MIT Press, 1986. Also, in “The Turing Archive for the History of Computing. http://www.AlanTuring.net/proposed_electronic_calculator. Accessed December, 2018.

  • Turing, A. M. (1948). Intelligent machinery. Report for National Physical Laboratory 1948. In B. Meltzer, & D. Michie (Eds.), Machine intelligence, 5 (pp. 3–23). Edinburgh University Press. Edinburgh, U.K., 1969. Also in: The Turing Archive for the History of Computing. http://www.AlanTuring.net/intelligent-machinery. Accessed December, 2018.

  • Turing, A. M. (1986). Lecture to the London Mathematical Society on 20 February, 1947. In B. E. Carpenter & R. W. Doran (Eds.), A. M. Turing’s ACE report of 1946 and other papers. Cambridge, MA: The MIT Press.

    Google Scholar 

  • von Foerster, H. (1996). Metaphysics of an experimental epistemologist. In R. Moreno-Díez & J. Mira-Mira (Eds.), Brain processes theories and models (pp. 3–10). Cambridge, MA: The MIT Press.

    Google Scholar 

  • von Neumann, J. (1956). Probabilistic logic and the synthesis of reliable organism from unreliable components. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 43–98). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • von Neumann, J. (1961). The general and logical theory of automata. In A. H. Taub (Ed.), The collected works of John von Neumann (Vol. 5). Oxford: Pergamon Press.

    Google Scholar 

  • von Neumann, J. (1966). Rigorous theories of control and information. In A. W. Burks (Ed.), Theory of self reproducing automata. Urbana, IL: University of Illinois Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurea Anguera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguera, A., Lara, J.A., Lizcano, D. et al. Turing: The Great Unknown. Found Sci 25, 1203–1225 (2020). https://doi.org/10.1007/s10699-019-09596-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-019-09596-6

Keywords

Navigation