Skip to main content
Log in

Incompatible models in chemistry: the case of electronegativity

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

During the second half of the nineteenth century, electronegativity (EN) has been one of the most relevant chemical concepts to explain the relationships between chemical substances and their possible reactions. Specifically, EN is a property of the substances that allows them to attract external electrons in bonding situations. The problem arises because EN cannot be measured directly. Indeed, the only way to measure it is through different properties that do can be directly measured, for instance enthalpy, ionization energies or electron affinities. What is particularly troubling about this case in quantum chemistry is that the different models used to describe and quantify EN are incompatible but, in a certain sense, equivalent because the same EN scale results in all of them. By analyzing Linus Pauling’s and Robert Mulliken’s models of EN, it will be argued that, if we remain cling to a traditional representative conception of models, we cannot understand the meaning of the information provided by those models. Indeed, if we do not want to adopt an instrumentalist point of view concerning chemical knowledge, we should reconsider by virtue of what a model represents the system, or, in other words, which the factors that determine the representative power of a model are. I will propose a new perspective that incorporates the role of experimental techniques in the very notion of representation; this perspective allows us to understand how supposedly incompatible models of the same target system can be both simultaneously representative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accorinti, H., Martínez González, J.C.: Acerca de la independencia de los modelos respecto de las teorías. Theoria 31, 225–245 (2016)

    Article  Google Scholar 

  • Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961)

    Article  Google Scholar 

  • Boeyens, J.C., du Toit, J.: The theoretical basis of electronegativity. Electron. J. Theor. Chem. 2, 296–301 (1997)

    Article  Google Scholar 

  • Bueno, O.: Empirical adequacy: a partial structures approach. Stud. Hist. Philos. Sci. Part A 28, 585–610 (1997)

    Article  Google Scholar 

  • Bueno, O., French, S., Ladyman, J.: On representing the relationship between the mathematical and the empirical. Philos. Sci. 69, 452–473 (2002)

    Article  Google Scholar 

  • Carnap R.: Empiricism, semantics and ontology. Reprinted in the Supplement to Meaning and Necessity: A Study in Semantics and Modal Logic. University of Chicago Press, Chicago (1950)

    Google Scholar 

  • Cartwright, N., Shomar, T., Suárez, M.: The tool box of science. In: Herfel, W., Krajewski, W., Niniiluoto, I., Wójcicki, R. (eds.) Theories and Models in Scientific Processes, Poznań Studies in the Philosophy of the Sciences and the Humanities, pp. 137–149. Rodopi, Amsterdam (1995)

    Google Scholar 

  • Da Costa, N., French, S.: Models, theories, and structures: thirty years on. Philos. Sci. 67, 116–127 (2000)

    Article  Google Scholar 

  • Da Costa, N., French, S.: Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  • Dunn, J.M.: Relevant predication: intrinsic properties and internal relations. Philos. Stud. 60, 177–206 (1990)

    Article  Google Scholar 

  • Fischer, G.: Content, design, and representation in chemistry. Found. Chem. 19, 17–28 (2017)

    Article  Google Scholar 

  • Frigg, R.: Models and fiction. Synthese 172, 251–268 (2010)

    Article  Google Scholar 

  • Frigg, R.: Models and representation: why structures are not enough. In: Measurement in Physics and Economics Project Discussion Paper Series. DP MEAS 25/02. London School of Economics, London (2002)

  • Frigg, R.: Scientific representation and the semantic view of theories. Theoria 55, 46–65 (2006)

    Google Scholar 

  • Giere, R.: How models are used to represent physical reality. Philos. Sci. 71, 742–752 (2004)

    Article  Google Scholar 

  • Giere, R.: An agent-based conception of models and scientific representation. Synthese 172, 269–281 (2010)

    Article  Google Scholar 

  • Giere, R.: Representing with physical models. In: Humphreys, P., Imbert, C. (eds.) Models, Simulations and Representations, pp. 209–215. Routledge, New York (2011)

    Google Scholar 

  • Hughes, R.I.G.: Models and representation. Philos. Sci. 64, S325–S336 (1997)

    Article  Google Scholar 

  • Jensen, W.B.: Electronegativity from Avogadro to Pauling. Part I: origins of the electronegativity concept. J. Chem. Educ. 73, 11–20 (1996)

    Article  Google Scholar 

  • Jensen, W.B.: Electronegativity from Avogadro to Pauling: II. Late nineteenth- and early twentieth-century developments. J. Chem. Educ. 80, 279–287 (2003)

    Article  Google Scholar 

  • Langton, R., Lewis, D.: Defining ‘intrinsic’. Philos. Phenomenol. Res. 58, 333–345 (1998)

    Article  Google Scholar 

  • Lewis, D.: Extrinsic properties. Philos. Stud. 44, 197–200 (1983)

    Article  Google Scholar 

  • Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world. Found. Chem. 7(2), 125–148 (2005)

    Article  Google Scholar 

  • Marshall, D., Weatherson, B.: Intrinsic vs. extrinsic properties. In: E. N. Zalta (ed.). The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/spr2018/entries/intrinsic-extrinsic/ (2018). Accessed 21 Jan 2018

  • Morrison, M.: One phenomenon, many models: inconsistency and complementarity. Stud. Hist. Philos. Sci. 42, 342–351 (2011)

    Article  Google Scholar 

  • Mulliken, R.: A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934)

    Article  Google Scholar 

  • Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932)

    Article  Google Scholar 

  • Pauling, L.: College Chemistry: An Introductory Textbook of General Chemistry, 2nd edn. W. H. Freeman & Company, San Francisco (1950)

    Google Scholar 

  • Putnam, H.: Reason, Truth and History. Cambridge University Press, Cambridge (1981)

    Book  Google Scholar 

  • Ruthenberg, K., Martínez González, J.C.: Electronegativity and its multiple faces: persistence and measurement. Found. Chem. 19, 61–75 (2017)

    Article  Google Scholar 

  • Sanderson, R.T.: Chemical Bonds and bond Energy, 2nd edn. Academic Press, New York (1976)

    Google Scholar 

  • Sider, T.: Intrinsic properties. Philos. Stud. 83, 1–27 (1996)

    Article  Google Scholar 

  • Suárez, M.: The role of models in the application of scientific theories: epistemological implications. In: Morgan, M., Morrison, M. (eds.) Models as Mediators, pp. 168–196. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  • Suárez, M.: Scientific representation: against similarity and isomorphism. Int. Stud. Philos. Sci. 17, 225–244 (2003)

    Article  Google Scholar 

  • Suárez, M.: An inferential conception of scientific representation. Philos. Sci. 71, 767–779 (2004)

    Article  Google Scholar 

  • Suárez, M.: Fictions in Science: Philosophical Essays on Modeling and Idealization. Routledge, New York (2009)

    Google Scholar 

  • Suárez, M.: Scientific realism, the Galilean strategy and representation. In: González, W. (ed.) Scientific Realism and Democratic Society: The Philosophy of Philip Kitcher. Poznan Studies in the Philosophy of the Sciences and the Humanities, pp. 269–292. Rodopi, Amsterdam (2012)

    Google Scholar 

  • Suárez, M., Cartwright, N.: Theories: tools versus models. Stud. Hist. Philos. Mod. Phys. 39, 62–81 (2008)

    Article  Google Scholar 

  • Vallentyne, P.: Intrinsic properties defined. Philos. Stud. 88, 209–219 (1997)

    Article  Google Scholar 

  • Wells, P.R.: Group electronegativities. In: Streitwieser Jr., A., Taft, R.W. (eds.) Progress in Physical Organic Chemistry, pp. 111–145. Wiley, Berkeley (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Lucas Accorinti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accorinti, H.L. Incompatible models in chemistry: the case of electronegativity. Found Chem 21, 71–81 (2019). https://doi.org/10.1007/s10698-018-09328-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-018-09328-x

Keywords

Navigation