Skip to main content

Advertisement

Log in

Choice-driven location-allocation model for healthcare facility location problem

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Improving access to care in medically under-served areas (MUA) is an important task for public health policy in many countries. A lack of access to care in MUAs is often addressed by establishing new service providers, which improves the accessibility in those regions in a geographic sense. However, the geographic accessibility is only a necessary condition for relieving the regions from being under-served; new service providers must be sufficiently attractive for care consumers to use so that the new establishment effectively translates to actual improvement in accessibility to care in the MUAs. In this paper, we first develop a location-allocation model for healthcare facilities that incorporates a choice model to represent care consumers’ preferences and choice decisions on the care facilities. Then we expand the model such that some of the attribute variables in the consumer utility function can be handled as decision variables in the location-allocation optimization. Thus, the proposed model determines the attributes variables of open facilities as well as their locations. Utility of the proposed model is demonstrated by using the Korea’s MUA support program for perinatal care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this paper, we use the terms “perinatal care capacity” and “perinatal care provider” interchangeably.

  2. In our context of obstetrics care, it is reasonable to assume all demand must choose some obstetrics care unit. If it is allowed that care consumer may not choose to use any care provider, (12) and (13) can be easily modified by including no-choice option.

  3. \(V_{i0}\) is constant since care units represented by index 0 are existing hospitals, for which we do not change any attribute therein.

  4. The minimum limit is a regulatory requirement; the maximum limit, on the other hand, is needed due to a technical reason—we use \(\hat{l}\) to define the number of pieces in the piecewise linear function, and \(\hat{l}\) requires both minimum and maximum value for \(z_{ij}\).

  5. Delivery records from the data suggest that most delivery cases are serviced in an obstetrics care provider within 90-minute of their residence; thus, when we establish a new care capacity in an MUA, those providers within 90-min of the MUA should be considered competing for the demand in the MUA.

References

  • Aros-Vera F, Marianov V, Mitchell JE (2013) p-hub approach for the optimal park-and-ride facility location problem. Eur J Oper Res 226(2):277–285

    Article  MathSciNet  MATH  Google Scholar 

  • Avijit GSM, Craig CS (1995) Multifacility retail networks. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 301–330

    Google Scholar 

  • Benati S, Hansen P (2002) The maximum capture problem with random utilities: problem formulation and algorithms. Eur J Oper Res 143(3):518–530

    Article  MathSciNet  MATH  Google Scholar 

  • Bornstein BH, Marcus D, Cassidy W (2000) Choosing a doctor: an exploratory study of factors influencing patients’ choice of a primary care doctor. J Eval Clin Pract 6(3):255–262

    Article  Google Scholar 

  • Castillo-López I, López-Ospina HA (2015) School location and capacity modification considering the existence of externalities in students school choice. Comput Ind Eng 80:284–294

    Article  Google Scholar 

  • Current J, Min H, Schilling D (1990) Multi-objective analysis of facility location decisions. Eur J Oper Res 49(3):295–307

    Article  MATH  Google Scholar 

  • Dan T, Marcotte P (2017) Competitive facility location with selfish users and queues. CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport = Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

  • Drezner T (1995) Competitive facility location in the plane. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 285–300

    Chapter  Google Scholar 

  • Eiselt HA, Laporte G (1995) Objectives in location problems. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 151–180

    Chapter  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. Sage

  • Haase K (2009) Discrete location planning. Institute of Transport and Logistics Studies

  • Haase K, Müller S (2015) Insights into clients’ choice in preventive health care facility location planning. OR Spectrum 37(1):273–291

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang K, Jang H, Lee T, Kim M, Shin H, Lee T (2017) A choice model for estimating realized accessibility: case study for obstetrics care in Korea. In: International conference on health care systems engineering, Springer, pp 73–85

  • Jang H, Hwang K, Lee T, Kim M, Shin H, Lee T (2017) A location problem for medically under-served areas in Korea. In: International conference on health care systems engineering, Springer, pp 61–71

  • Jang H, Hwang K, Lee T, Lee T (2019) Designing robust rollout plan for better rural perinatal care system in Korea. Eur J Oper Res 274(2):730–742

    Article  MathSciNet  Google Scholar 

  • Khan AA (1992) An integrated approach to measuring potential spatial access to health care services. Socio-Econ Plan Sci 26(4):275–287

    Article  Google Scholar 

  • Koppelman FS, Bhat C (2006) A self instructing course in mode choice modeling: multinomial and nested logit models

  • Ljubić I, Moreno E (2018) Outer approximation and submodular cuts for maximum capture facility location problems with random utilities. Eur J Oper Res 266(1):46–56

    Article  MathSciNet  MATH  Google Scholar 

  • Marianov V, Ríos M, Icaza MJ (2008) Facility location for market capture when users rank facilities by shorter travel and waiting times. Eur J Oper Res 191(1):32–44

    Article  MathSciNet  MATH  Google Scholar 

  • Marschak J et al (1959) Binary choice constraints on random utility indicators. Cowles Foundation for Research in Economics, Yale University, Tech. rep

  • McFadden D (1973) Conditional logit analysis of qualitative choice behaviour. In: Zarembka P (ed) Frontiers in econometrics. Academic Press, New York, pp 105–142

    Google Scholar 

  • O’Kelly ME (1987) Spatial interaction based location-allocation models. In: Ghosh AGR (ed) Spatial analysis and location-allocation models, van Nostrand Reinhold, New York, pp 302–326

  • Pellegrini PA, Fotheringham AS (2002) Modelling spatial choice: a review and synthesis in a migration context. Prog Hum Geogr 26(4):487–510

    Article  Google Scholar 

  • Radman M, Eshghi K (2018) Designing a multi-service healthcare network based on the impact of patients’ flow among medical services. OR Spectrum pp 1–42

  • Rahmaniani R, Rahmaniani G, Jabbarzadeh A (2014) Variable neighborhood search based evolutionary algorithm and several approximations for balanced location-allocation design problem. Int J Adv Manuf Tech 72(1–4):145–159

    Article  Google Scholar 

  • Roy JR, Thill JC (2003) Spatial interaction modelling. Pap Reg Sci 83(1):339–361

    Article  Google Scholar 

  • Sherali HD, Tuncbilek CH (1992) A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J Global Optim 2(1):101–112

    Article  MathSciNet  MATH  Google Scholar 

  • Victoor A, Delnoij DM, Friele RD, Rademakers JJ (2012) Determinants of patient choice of healthcare providers: a scoping review. BMC Health Serv Res 12(1):272

    Article  Google Scholar 

  • Zhang Y (2015) Designing a retail store network with strategic pricing in a competitive environment. Int J Prod Econ 159:265–273

    Article  Google Scholar 

  • Zhang Y, Berman O, Verter V (2012) The impact of client choice on preventive healthcare facility network design. OR Spectrum 34(2):349–370

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Liang L, Liu E, Chen C, Atkins D (2016) Patient choice analysis and demand prediction for a health care diagnostics company. Eur J Oper Res 251(1):198–205

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Research Foundation of Korea (Grant No. 2019-R1A2C1088302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesik Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A. Proof of linearization for choice constraints

We follow Aros-Vera et al. (2013) to linearize the original constraint on choice probability, (12) and (13). This linearization results in (14)–(16), and in this “Appendix”, we show that they are equivalent to the original constraints. For ease of reference, (12)–(16) are reproduced here.

$$\begin{aligned}&x_{ij} = \frac{e^{V_{ij}} y_{j}}{e^{V_{i0}}+\sum _{m \in J_i^\tau } e^{V_{im}} y_m},&\forall i \in I, \forall j \in J_i^\tau \qquad&(12)\\&x_{i0} = \frac{e^{V_{i0}}}{e^{V_{i0}}+\sum _{m \in J_i^\tau } e^{V_{im}} y_m},&\forall i \in I \qquad&(13)\\&\sum _{j\in J_i^\tau } x_{ij} + x_{i0} = 1,&\forall i \in I \qquad&(14)\\&e^{V_{i0}} x_{ij} \le e^{V_{ij}} x_{i0},&\forall i \in I, \forall j \in J_i^\tau \qquad&(15)\\&e^{V_{i0}} x_{ij} \ge e^{V_{ij}} (x_{i0}-(1-y_j)),&\forall i \in I, \forall j \in J_i^\tau \qquad&(16) \end{aligned}$$

Proof

For any two alternatives j and k, the ratio of the choice probabilities \(x_{ij}\) and \(x_{ik}\) is

$$\begin{aligned}\frac{x_{ij}}{x_{ik}} = \frac{e^{V_{ij}/ \sum _{m} e^{V_{im}}}}{e^{V_{ik}/\sum _{m} e^{V_{im}}}} = \frac{e^{V_{ij}}}{e^{V_{ik}}}=e^{V_{ij}-V_{ik}}\end{aligned}$$

This ratio is independent from other alternatives than j and k, and is said to be independent from irrelevant alternatives (IIA). A logit model naturally exhibits this IIA property. By definition of probability, we have

$$\begin{aligned} \sum _{j\in J} x_{ij} + x_{i0} = 1, \quad \forall i \in I \end{aligned}$$
(A.1)

With the IIA property a logit model, we can write choice probability \(x_{ij}\) as

$$\begin{aligned}x_{ij} = e^{V_{ij}-V_{i0}} x_{i0}, \quad \forall i \in I,\ \forall j \in J \end{aligned}$$
(A.2)

Now, substitute (A.2) into (A.1), and we obtain the following:

$$\begin{aligned}&e^{V_{i1}-V_{i0}} x_{i0} + e^{V_{i2}-V_{i0}} x_{i0} +\cdots + x_{i0} = 1, \forall i \in I \nonumber \\&\leftrightarrow \quad e^{-V_{i0}} x_{i0} = \frac{1}{\sum _{m\in J} e^{V_{im}} + e^{V_{i0}}} \nonumber \\&\leftrightarrow \quad x_{i0} = \frac{e^{V_{i0}}}{\sum _{m\in J} e^{V_{im}} + e^{V_{i0}}} \end{aligned}$$
(A.3)

Then (A.2) can be rewritten as

$$\begin{aligned} x_{ij}&= e^{V_{ij}-V_{i0}} \frac{e^{V_{i0}}}{\sum _{m\in J} e^{V_{im}} + e^{V_{i0}}} \nonumber \\&= \frac{e^{V_{ij}}}{\sum _{m\in J} e^{V_{im}} + e^{V_{i0}}}, \quad \forall i \in I,\ \forall j \in J \end{aligned}$$
(A.4)

Note that the equality (A.2) can be split to upper and lower inequality:

$$\begin{aligned} x_{ij}\le e^{V_{ij}-V_{i0}} x_{i0}, \quad \forall i \in I,\ \forall j \in J \end{aligned}$$
(A.5)
$$\begin{aligned} x_{ij}\ge e^{V_{ij}-V_{i0}} x_{i0}, \quad \forall i \in I,\ \forall j \in J \end{aligned}$$
(A.6)

Thus, we have the following relationships:

(A.1), (A.2) \(\leftrightarrow\) (A.1), (A.5) , (A.6) \(\leftrightarrow\) (A.3), (A.4).

Now, we take into account \(y_j\) in (12). Specifically, we need make sure that (1) if \(y_{j}=0\) then \(x_{ij}=0\), and (2) if \(y_{j}=1\) then \(x_{ij}=e^{V_{ij} }/ (\sum _{m\in J} e^{V_{im}} y_{m} + e^{V_{i0}})\).

In Constraint (11), we require \(x_{ij} \le y_{j}\), and this ensures condition (1). For (2), it is evidently satisfied when \(y_j\) = 1. Note that, since \(e^{V_{ij}-V_{i0}} x_{i0}\) is always positive, if \(x_{ij}=0\), (A.6) is invalid while constraint (A.5) is valid. To relieve this invalidity, we add the \(-(y_{j}-1)\) term. This ensures that if \(y_{j}=1\), constraint (16) is same as (A.6) and that if \(y_{j}=0\), constraint (16) is valid. Finally,

Constraint (12) \(\leftrightarrow\) Constraint (A.4),

Constraint (13) \(\leftrightarrow\) Constraint (A.3),

Constraint (14) \(\leftrightarrow\) Constraint (A.1),

Constraint (15) \(\leftrightarrow\) Constraint (A.5),

Constraint (16) \(\leftrightarrow\) Constraint (A.6).

Since constraint (A.1), (A.5), (A.6) \(\leftrightarrow\) constraint (A.3), (A.4), constraint (14), (15), (16) \(\leftrightarrow\) constraint (12), (13). For more detail, we refer readers to Aros-Vera et al. (2013). \(\square\)

Appendix: B. Full formulation of \(P_{MUA}\)

$$\begin{aligned} (P_{MUA}) \qquad max&\sum _{k\in K}{s_k}\\&\lambda _k^p = \sum _{i\in I_k} h_i\rho _i / \sum _{i\in I_k} \rho _i,&\forall k \in K \\&\lambda _k^r = \sum _{i\in I_k, j\in J_i^\tau } \rho _i x_{ij} / \sum _{i\in I_k} \rho _i,&\forall k \in K \\&s_k^p \ge \lambda _k^p - \varLambda ^{p},&\forall k \in K \\&s_k^p \le \lambda _k^p - \varLambda ^{p} +1 ,&\forall k \in K \\&s_k^r \ge \lambda _k^r - \varLambda ^{r},&\forall k \in K \\&s_k^r \le \lambda _k^r - \varLambda ^{r} +1,&\forall k \in K \\&s_k^p + s_k^r \ge s_k,&\forall k \in K \\&h_i \le \sum _{j\in J_i^\tau } y_{j},&\forall i \in I \\&x_{ij} \le y_{j},&\forall i \in I, \forall j \in J \\&\sum _{j\in J_i^\tau } x_{ij} + x_{i0} = 1,&\forall i \in I \\&\underline{z}_{ij}+\sum _l z_{ijl}=z_{ij},&\forall i \in I, \forall j \in J_i^\tau \cap J_c \\&z_{ijl} \le z_{ij(l-1)},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=2,\ldots ,\hat{l}\\&e^{V_{i0}} x_{ij} \le e^{V_{ij}} x_{i0},&\forall i \in I, \forall j \in J_i^\tau \cap J_o \\&e^{V_{i0}} x_{ij} \ge e^{V_{ij}} (x_{i0}-(1-y_j)),&\forall i \in I, \forall j \in J_i^\tau \cap J_o \\&e^{V_{i0}} x_{ij} \le e^{V_{ij0}^\star }x_{i0}+\sum _{l=1}^{\hat{l}} \theta _{ijl} \phi _{ijl}^x,&\forall i \in I, \forall j \in J_i^\tau \cap J_c \\&e^{V_{i0}} x_{ij} \ge e^{V_{ij0}^\star }(x_{i0}-(1-y_j))\\&\qquad \qquad +\sum _{l=1}^{\hat{l}} \theta _{ijl} (\phi _{ijl}^x-(z_{ijl}-\phi _{ijl}^y)),&\forall i \in I, \forall j \in J_i^\tau \cap J_c \\&\phi _{ijl}^x \ge 0,&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^x \le z_{ijl},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^x \le x_{i0},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^x \ge z_{ijl}+x_{i0}-1,&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^y \ge 0,&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^y \le z_{ijl},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^y \le y_{j},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&\phi _{ijl}^y \ge z_{ijl}+y_{j}-1,&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&o_{j} = z_{ij},&\forall i \in I, \forall j \in J_c \\&o_{j} \ge y_j \underline{O},&\forall j \in J_c \\&o_{j} \le y_j \overline{O},&\forall j \in J_c \\&C_u\sum _{j\in J_c} y_j+C_p\sum _{j\in J_c}o_{j} \le B\\&z_{ijl} \in \{0,1\},&\forall i \in I, \forall j \in J_i^\tau \cap J_c, l=1,\ldots ,\hat{l} \\&0 \le x_{ij} \le 1, s_k, s_k^p, s_k^r, h_i, y_j \in \{0,1\},&\forall i \in I, \forall j \in J,\forall k \in K \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, K., Asif, T.B. & Lee, T. Choice-driven location-allocation model for healthcare facility location problem. Flex Serv Manuf J 34, 1040–1065 (2022). https://doi.org/10.1007/s10696-021-09441-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-021-09441-8

Keywords

Navigation