Skip to main content
Log in

Leasing or selling? The channel choice of durable goods manufacturer considering consumers’ capital constraint

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

In this paper, we explore how a monopoly manufacturer chooses the market strategies and decides the optimal price to obtain maximum profit. We divide the market into the C-type market and the N-type market, and analyze the profitability of the monopoly manufacturer who takes the pure-selling, pure-leasing and hybrid strategy respectively, considering consumers’ capital constraint and the life span of the durable goods in an indefinite time horizon model. (1) We find that a larger proportion of the consumers with capital constraint has a more significant impact on the prices and it could slow down the development of the rental market. When the scale of the group attains up to a threshold level, it would greatly influence the customers’ demand and their marketing strategy, and encourages more manufacturers to take the leasing strategy. (2) In the Hybrid Strategy, we see explicit growth in the overall profit with both the leasing channel and the selling channel working together, although the former outperforms the latter. The suppressed selling channel, in fact, has to lower the price to keep the market coverage, with an independent market structure. (3) Finally, we find that a leasing agent may help the manufacturer at first and then become a tough competitor. These findings provide new insights for the operation of large construction machinery manufacturing companies. subject classification numbers as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal VV, Ferguson M, Toktay LB et al (2012) Is leasing greener than selling? Manag Sci 58(3):523–533

    Article  Google Scholar 

  • Bulow JI (1982) Durable-goods monopolists. J Political Econ 90(2):314–332

    Article  Google Scholar 

  • Bucovetsky S, Chilton J (1986) Concurrent renting and selling in a durable-goods monopoly under threat of entry. Rand J Econ 1986:261–275

    Article  Google Scholar 

  • Bhaskaran SR, Gilbert SM (2005) Selling and leasing strategies for durable goods with complementary products. Manag Sci 51(8):1278–1290

    Article  Google Scholar 

  • Coase RH (1972) Durability and monopoly. J Law Econ 15(1):143–149

    Article  Google Scholar 

  • Chien HK, Chu CYC (2008) Sale or lease? Durable-goods monopoly with network effects. Mark Sci 27(6):1012–1019

    Article  Google Scholar 

  • Desai P, Purohit D (1998) Leasing and selling: optimal marketing strategies for a durable goods firm. Manag Sci 44(11–PART–2):S19–S34

    Article  Google Scholar 

  • Desai PS, Purohit D (1999) Competition in durable goods markets: the strategic consequences of leasing and selling. Mark Sci 18(1):42–58

    Article  Google Scholar 

  • Desai P, Koenigsberg O, Purohit D (2004) Strategic decentralization and channel coordination. Quant Mark Econ 2(1):5–22

    Article  Google Scholar 

  • Debo LG, Toktay LB, Van Wassenhove LN (2005) Market segmentation and product technology selection for remanufacturable products. Manag Sci 51(8):1193–1205

    Article  Google Scholar 

  • Dasgupta S, Siddarth S, Silva-Risso J (2007) To lease or to buy? A structural model of a consumer s vehicle and contract choice decisions. J Mark Res 44(3):490–502

    Article  Google Scholar 

  • Dou Y, Hu YJ, Wu DJ (2017) Selling or leasing? Pricing information goods with depreciation of consumer valuation. Inf Syst Res 28(3):585–602

    Article  Google Scholar 

  • Gul F, Sonnenschein H, Wilson R (1985) Foundation of dynamic monopoly and the coase conjecture. Stanford Univ CA Inst for mathematical studies in the social sciences

  • Goering GE (1997) Product durability and moral hazard. Rev Ind Organ 12(3):399–411

    Article  Google Scholar 

  • Gilbert SM, Randhawa RS, Sun H (2014) Optimal per-use rentals and sales of durable products and their distinct roles in price discrimination. Prod Oper Manag 23(3):393–404

    Article  Google Scholar 

  • Huang S, Yang Y, Anderson K (2001) A theory of finitely durable goods monopoly with used-goods market and transaction costs. Manag Sci 47(11):1515–1532

    Article  Google Scholar 

  • Jia K, Liao X, Feng J (2018) Selling or leasing? Dynamic pricing of software with upgrades. Eur J Oper Res 266(3):1044–1061

    Article  MathSciNet  Google Scholar 

  • Knut Wicksell (1934) Lecrures on Poliricul Economy, vol 1. George Routledge and Sons, London

    Google Scholar 

  • Kim D (2010) Optimal strategies for durable goods monopolists. J Econ Res 15(3):273–291

    Google Scholar 

  • Li F, Liu J, Wei Y (2014) Pricing decision in a dual-channel system with heterogeneous consumers//LISS 2013: Proceedings of 3rd international conference on logistics. Springer, Informatics and Service Science, p 307

  • Lacourbe P (2016) Durable goods leasing in the presence of exporting used products to an international secondary market. Eur J Oper Res 250(2):448–456

    Article  MathSciNet  Google Scholar 

  • Mantena R, Tilson V, Zheng X (2012) Literature survey: mathematical models in the analysis of durable goods with emphasis on information systems and operations management issues. Decis Support Syst 53(2):331–344

    Article  Google Scholar 

  • Suslow VY (1986) Commitment and monopoly pricing in durable goods models. Int J Ind Organ 4(4):451–460

    Article  Google Scholar 

  • Tilson V, Wang Y, Yang W (2009) Channel strategies for durable goods: coexistence of selling and leasing to individual and corporate consumers. Prod Oper Manag 18(4):402–410

    Article  Google Scholar 

  • Van Loon P, Delagarde C, Van Wassenhove LN (2018) The role of second-hand markets in circular business: a simple model for leasing versus selling consumer products. Int J Prod Res 56(1–2):960–973

    Article  Google Scholar 

  • Xiong Y, Yan W, Fernandes K et al (2012) Bricks vs. clicks: the impact of manufacturer encroachment with a dealer leasing and selling of durable goods. Eur J Oper Res 217(1):75–83

    Article  MathSciNet  Google Scholar 

  • Yin S, Ray S, Gurnani H et al (2010) Durable products with multiple used goods markets: product upgrade and retail pricing implications. Mark Sci 29(3):540–560

    Article  Google Scholar 

  • Yi P, Huang M, Guo L et al (2016) Dual recycling channel decision in retailer oriented closed-loop supply chain for construction machinery remanufacturing. J Clean Prod 137:1393–1405

    Article  Google Scholar 

  • Zhang J, Seidmann A (2010) Perpetual versus subscription licensing under quality uncertainty and network externality effects. J Manag Inf Syst 27(1):39–68

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank handling editor and two anonymous referees for their helpful comments and suggestions. This research was supported by the National Natural Science Foundation of China(Grant No. 71932002) and Young Beijing Scholars Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or Guoqing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix: Proofs

1.1.1 Proof of lemma 1

From the constraint, we have

\(Q_{ns}=Nq_{ns}=1-\frac{p_{s}}{V_{s}}(P_{s}=Np_{s})\)

Substitute them into the profit function

\(\Pi _{S}=(1-m)(P_{s}-c)\cdot q_{ns}\)

After solving the first order conditions we obtain the only interior solution

\(P^{S}_{s}=\frac{NV_{s}+c}{2}\)

Substituting it back, we obtain the optimal quantity and profit:

\(Q_{ns}=\frac{NV_{s}-c}{2NV_{s}}\);

\(\Pi _{S}=\frac{(1-m)(NV_{s}-c)^{2}}{4N^{2}V_{s}}\) \(\square\)

1.1.2 Proof of lemma 2

From the constraint, we have

\(Q_{nl}=Nq_{nl}=1-\frac{P_{l}}{V_{l}}\)

\(Q_{c}=Nq_{c}=\omega -\frac{P_{l}}{V_{l}}\)

Substitute them into the profit function

\(\begin{aligned} \Pi _{L} = & (1 - m)[(P_{l} - c) \cdot q_{{nl}} + (P_{l} - c_{m} ) \cdot (Q_{{nl}} - q_{{nl}} )] \\ & + m[(P_{l} - c) \cdot q_{c} + (P_{l} - c_{m} ) \cdot (Q_{c} - q_{c} )] \\ \end{aligned}\)

And the function becomes

\(\begin{array}{rcl} \Pi _{L}&{}=&{}\frac{(1-m)}{N}[(P_{l}-c)\cdot (1-\frac{P_{l}}{V_{l}}) +(P_{l}-c_{m})\cdot (N-1)\cdot (1-\frac{P_{l}}{V_{l}})]\\ &{}~&{}+\frac{m}{N}[(P_{l}-c)\cdot (\omega -\frac{P_{l}}{V_{l}})+(P_{l}-c_{m})(N-1)(\omega -\frac{P_{l}}{V_{l}})] \end{array}\)

After solving the first order conditions we obtain the only interior solution

\(P^{L}_{l}=\frac{V_{l}}{2}(1-m+m\omega )+\frac{c+(N-1)c_{m}}{2N}\)

Substituting it back, we obtain the optimal quantity and profit:

\(Q^{L}_{nl}=\frac{1+m-m\omega }{2}-\frac{c+(N-1)c_{m}}{2NV_{l}}\)

\(Q^{L}_{c}=\frac{2\omega -1+m-m\omega }{2}-\frac{c+(N-1)c_{m}}{2NV_{l}}\)

\(\Pi _{L}=\frac{(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})^{2}}{4N^{2}V_{l}}\) \(\square\)

1.1.3 Proof of lemma 3

From the constraint, we have

\(Q_{ns}=Nq_{ns}=\frac{P_{l}-p_{s}}{V_{l}-V_{s}}-\frac{p_{s}}{V_{s}}\)

\(Q_{nl}=Nq_{nl}=1-\frac{P_{l}-p_{s}}{V_{l}-V_{s}}\)

\(Q_{c}=Nq_{c}=\omega -\frac{P_{l}}{V_{l}}\)

Substitute them into the profit function

\(\begin{aligned} \Pi _{H} = &\, (1 - m)[(P_{s} - c) \cdot q_{{ns}} + (P_{l} - c) \cdot q_{{nl}} + (P_{l} - c_{m} ) \cdot (Q_{{nl}} - q_{{nl}} )] \\ & + m[(P_{l} - c) \cdot q_{c} + (P_{l} - c_{m} ) \cdot (Q_{c} - q_{c} )] \\ \end{aligned}\)

And the function becomes

$$\begin{aligned} \begin{array}{rcl} \Pi _{H}&{}=&{}\frac{(1-m)}{N}[(P_{s}-c)(\frac{P_{l}-p_{s}}{V_{l}-V_{s}} -\frac{p_{s}}{V_{s}})+(P_{l}-c)(1-\frac{P_{l}-p_{s}}{V_{l}-V_{s}})\\&&+\, (P_{l}-c_{m})(N-1)(1-\frac{P_{l}-p_{s}}{V_{l}-V_{s}})]\\ &&+\,\frac{m}{N}[(P_{l}-c)(\omega -\frac{P_{l}}{V_{l}})+(P_{l} -c_{m})(N-1)(\omega -\frac{P_{l}}{V_{l}})] \end{array} \end{aligned}$$

We use \(p_{s}\) instead of \(P_{s}\) to simplify the calculation. After solving the first order conditions we obtain the only interior solution

\(P^{H}_{l}=\frac{V_{l}}{2}(1-m+m\omega )+\frac{c+(N-1)c_{m}}{2N}\);

\(P^{H}_{s}=\frac{c+(1-m+m\omega )NV_{s}}{2N}(P^{H}_{s}=Np^{H}_{s})\).

Then we check the second order conditions

\(\frac{\partial ^{2}\Pi _{H}}{\partial p^{2}_{s}}=\frac{-2(1-m)V_{l}}{V_{s}(V_{l}-V_{s})};~~~\) \(\frac{\partial ^{2}\Pi _{H}}{\partial p_{s}\partial P_{l}}=\frac{2(1-m)}{V_{l}-V_{s}};~~~\) \(\frac{\partial ^{2}\Pi _{H}}{\partial P^{2}_{l}}=\frac{-2(V_{l}-mV_{s})}{V_{s}(V_{l}-V_{s})}\).

The Hessian is semi-definitive. Therefore, it’s the optimal solution. Substituting it back, we obtain the optimal quantity and profit:

\(Q^{H}_{ns}=\frac{(N-1)c_{m}}{2N(V_{l}-V_{s})}-\frac{c}{2NV_{s}}\)

\(Q^{H}_{nl}=1-\frac{N(1-m+m\omega )(V_{l}-V_{s})+(N-1)c_{m}}{2N(V_{l}-V_{s})}\)

\(Q^{H}_{c}=\omega -\frac{(1-m+m\omega )V_{l}N+c+(N-1)c_{m}}{2NV_{l}}\)

\(\Pi _{H}=\frac{(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})^{2}}{4N^{2}}+ \frac{(1-m)[c(V_{l}-V_{s})-(N-1)c_{m}V_{s}]^{2}}{4N^{2}V_{l}V_{s}(V_{l}-V_{s})}\) \(\square\)

1.1.4 Proof of proposition 1

We set function

$$\begin{aligned} \begin{array}{rcl} F(m) &{} = &{} \Pi _{L}-\Pi _{S}\\ &{}=&{}\frac{(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})^{2}}{4N^{2}V_{l}}-\frac{(1-m)(NV_{s}-c)^{2}}{4N^{2}V_{s}}\\ &{} = &{} \frac{V_{l}(1-\omega )^{2}}{4}m^{2}+\frac{(NV_{s}-c)^{2}-2 NV_{s}(1-\omega )(NV_{l}-c-(N-1)c_{m})}{4N^{2}V_{s}}m\\&&+\,\frac{V_{s}(NV_{l}-c-(N-1)c_{m})^{2}-V_{l}(NV_{s}-c)^{2}}{4N^{2}V_{l}V_{s}} \end{array} \end{aligned}$$

\(f(V_{s},V_{l})=\frac{V_{s}(NV_{l}-c-(N-1)c_{m})^{2} -V_{l}(NV_{s}-c)^{2}}{4N^{2}V_{l}V_{s}}\)

(a)\(F^{''}(m)=\frac{V_{L}(1-\omega )^{2}}{2}>0\), \(F'(m)\) is strictly increasing in m.

(b)If \(F'(0)=\frac{(NV_{s}-c)^{2}-2 NV_{s}(1-\omega )(NV_{l}-c-(N-1)c_{m})}{4N^{2}V_{s}}>O\), then it is equivalent to \(\omega >\omega _{1}=1-\frac{(NV_{s}-c)^{2}}{2NV_{s}(NV_{l}-c-(N-1)c_{m})}\)

(c1)Therefore, when the C-type market satisfies the following: \(\omega >\omega _{1}\), we can see that F(m) is strictly increasing in m.

(c2)Otherwise, F(m) initially decreases, and turns to increase after \(m>m_{1}\), when \(F'(m)=0\), \(m_{1}=\frac{2NV_{s}(1-\omega )(NV_{l}-c-(N-1)c_{m})-(NV_{s}-c)^{2}}{2N^{2}V_{s}V_{l}(1-\omega )^{2}}\).

Then we figure out the number of zeroes of F(m). \(F(1)=\frac{(NV_{l}\omega -c-(N-1)c_{m})^{2}}{4N^{2}V_{l}}\).

(a1) So if \(\frac{V_{s}(NV_{l}-c-(N-1)c_{m})^{2}-V_{l}(NV_{s}-c)}{4N^{2}V_{l}V_{s}}<0\). It’s easy to verify that there is only one zero point (No matter whether it is in the situation c1 or c2).

(a2) Then we assume \(F(0)>0\) and \(F'(0)<0\). There are two zero points. We set them as \(V_{s1}\) and \(V_{s2}\), respectively.

So,\(\Delta =b^{2}-4ac =[\frac{(NV_{s}-c)^{2}-2NV_{s}(1-\omega )(NV_{l}-c-(N-1)c_{m})}{4N^{2}V_{s}}]^{2}-\frac{(m^{2}(1-\omega )^{2}V_{l})(V_{s}(NV_{l} -c-(N-1)c_{m})^{2}-V_{l}(NV_{s}-c)^{2})}{4N^{2}V_{l}V_{s}}\) \(\Delta >0\) is equivalent to \((NV_{s}-c)^{2}-4NV_{s}(1-\omega )(\omega NV_{l}-c-(N-1)c_{m})>0\). And there is \(V_{s2}\) in [0,1], \(\Delta <0\) is equivalent to \((NV_{s}-c)^{2}-4NV_{s}(1-\omega )(\omega NV_{l}-c-(N-1)c_{m})<0\). There is a point \(V_{s1}\) which satisfies the \(F(0)=0\) .

\(\begin{array}{lll} \frac{\partial \Pi _{S}}{\partial m} &{} = &{}\frac{-(NV_{s}-c)^{2}}{4N^{2}V_{s}}<0;\\ \frac{\partial \Pi _{L}}{\partial m} &{} = &{}\frac{2(\omega -1)(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})^{2}}{4N^{2}V_{s}}<0. \end{array}\) \(\square\)

1.1.5 Corollary 1

The leasing company’s total demand can be written as \(Q^{L}=\frac{1-m+m\omega }{2}+\frac{c+(N-1)c_{m}}{2NV_{l}}\). The derivatives of profit, price and demand with respect to \(c_{m}\) can be seen as following.

\(\begin{array}{rcl} 1-m &{}+&{} m\omega = 1+(\omega -1)m;\\ \frac{\partial \Pi _{L}}{\partial c_{m}}&{} = &{} \frac{-2(N-1)(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})}{4N^{2}V_{l}}<0;\\ \frac{\partial Q^{L}}{\partial c_{m}}&{} = &{} \frac{N-1}{2NV_{l}}>0;\\ \frac{\partial p^{L}_{l}}{\partial c_{m}}&{} = &{} \frac{N-1}{2N}>0. \end{array}\) \(\square\)

1.1.6 Proof of proposition 2

The derivatives of profit of leasing company with respect to N can be seen as

\(\frac{\partial \Pi _{L}}{\partial N}=\frac{(c-c_{m})[NV_{l}(1-m+m\omega )-c-(N-1)c_{m}]}{2N^{3}V_{l}}>0\)

As for selling companies, we have \(\frac{\partial \Pi _{S}}{\partial N}=\frac{(1-m)[1-\delta ^{N}-c(1-\delta )]}{4N^{2}(1-\delta )} \{\frac{-N\ln \delta \cdot \delta ^{N}[1-\delta ^{N}+c(1-\delta )] +c(1-\delta )(1-\delta ^{N})}{(1-\delta ^{N})^{2}}- (\frac{1-\delta ^{N}}{1-\delta ^{N}})^{2}\}(NV_{s}=\frac{1-\delta ^{N}}{1-\delta })\)

\(\begin{array}{rcl} g(N)&{}=&{}\frac{-N\ln \delta \cdot \delta ^{N}[1-\delta ^{N}+c(1-\delta )]+c(1-\delta )(1-\delta ^{N})}{(1-\delta ^{N})^{2}}-(\frac{1-\delta ^{N}}{1-\delta ^{N}})^{2}~[\delta \in (0,1)]\\ g'(N)&{}=&{}\frac{-N\ln ^{2}\delta \cdot \delta ^{N}[1-\delta ^{N}+c(1-\delta )]-\ln \delta \cdot \delta ^{N}(1-\delta ^{N})}{(1-\delta ^{N})^{3}}\\ &{}<&{}\frac{-N\ln ^{2}\delta \cdot \delta ^{N}(1-\delta ^{N})-\ln \delta \cdot \delta ^{N}(1-\delta ^{N})}{(1-\delta ^{N})^{3}}\\ &{}=&{}\frac{(-\ln \delta \cdot \delta ^{N})(1-\delta ^{N})(N\ln \delta +1-\delta ^{N})}{(1-\delta ^{N})^{3}}\\ &{}<&{}0 \end{array}\)

Finally, we have \(g(1)=\frac{-\ln \delta \cdot \delta }{1-\delta }(1+c)+c-1>0\)(\(\delta\) is approximately equal to product quantity 1), and \({\lim \limits _{N\rightarrow \infty }} g(N)=c(1-\delta )-1<0\).

Therefore, there is a unique \(N^{*}\) that satisfies \(N<N^{*}\), then \(\frac{\partial \Pi _{S}}{\partial N}>0\), and \(\Pi _{S}\) increases monotonously. That is to say, there is a unique optimal product life span for selling companies. \(\square\)

1.1.7 Proof of proposition 4

The derivatives of profit, prices and demand with respect to m can be seen as

\(\frac{\partial \Pi _{H}}{\partial m}=\frac{(NV_{l}(1-m+m\omega )-c-(N-1)c_{m})(\omega -1) V_{l}}{2N}-\frac{[c(V_{l}-V_{s})-(N-1)c_{m}V_{s}]^{2}}{4N^{2}V_{s}V_{l}(V_{l}-V_{s})};\)

\(\frac{\partial P^{H}_{l}}{\partial m}=\frac{V_{l}}{2}(\omega -1)<0\); \(\frac{\partial P^{H}_{s}}{\partial m}=\frac{(\omega -1)NV_{S}}{2}<0\).

\(\frac{\partial Q^{H}_{ns}}{\partial m}=0\); \(\frac{\partial Q^{H}_{nl}}{\partial m}=\frac{\partial Q^{H}_{c}}{\partial m}=\frac{1-\omega }{2}>0\).

The results above can be interpreted into Proposition 4. \(\square\)

1.1.8 Corollary 2

The derivatives of prices and demand with respect to life span N can be written as

\(\begin{array}{rcl} \frac{\partial P^{H}_{l}}{\partial N} &{} = &{}-\frac{c-c_{m}}{2N^{2}}<0;\\ \frac{\partial P^{H}_{s}}{\partial N} &{} = &{}(1-m+m\omega )V_{s}>0;\\ \frac{\partial p^{H}_{s}}{\partial N} &{} = &{}-\frac{c}{2N^{2}}<0;\\ \frac{\partial Q^{H}_{nl}}{\partial N} &{} = &{}\frac{c_{m}}{2N^{2}(V_{l}-V_{s})}>0;\\ \frac{\partial Q^{H}_{c}}{\partial N} &{} = &{}\frac{c-c_{m}}{2N^{2}V_{l}}>0. \end{array}\) The results above can be interpreted into Corollary 2. \(\square\)

1.1.9 Proof of lemma 4

From the constraint, we have

\(\begin{array}{lcl} Q_{ns}&{}=&{}Nq_{ns}=1-\frac{p_{s}}{V_{s}}(P_{s}=Np_{s}=\frac{NV_{s}+c}{2});\\ Q_{A}&{}=&{}Nq_{A}=\omega -\frac{P_{A}}{V_{l}}.\\ \\ \end{array}\)

(a) Substitute them into the profit function

\(\Pi ^{a}_{A}=m[(P_{A}-P_{s})q_{A}+(P_{A}-c_{m})(Q_{A}-q_{A})]\)

And the function becomes

\(\Pi ^{a}_{A}=\frac{m}{N}[(P_{A}-P_{s})(\omega -\frac{P_{A}}{V_{l}}) +m(P_{A}-c_{m})(N-1)(\omega -\frac{P_{A}}{V_{l}})]\)

After solving the first order conditions we obtain the only interior solution

\(P^{a}_{A}=\frac{2\omega NV_{l}+NV_{s}+c+2(N-1)c_{m}}{4N}\)

Substituting it back, we obtain the optimal quantity and profit of agents and the manufacturer:

\(\begin{array}{cll} Q^{a}_{A} &{}=&{} \frac{2\omega NV_{l}-[NV_{s}+c+2(N-1)c_{m}]}{4NV_{l}};\\ \Pi ^{a}_{M}&{}=&{}\frac{(1-m)(NV_{s}-c)^{2}}{4N^{2}V_{s}}+\frac{m(NV_{s}-c) [2\omega NV_{l}-NV_{s}-c-2(N-1)c_{m}]}{8N^{2}V_{l}};\\ \Pi ^{a}_{A}&{}=&{} \frac{m}{16N^{2}V_{l}}[2\omega NV_{l}-NV_{s}-c-2(N-1)c_{m}]^{2}.\\ \\ \end{array}\)

(b) We set the agents’ wholesale price as \(\alpha P_{s}\) and think the N-type consumers include the agents.

Substitute the constraints into the profit function:

\(\Pi ^{b}_{A}=m[(P_{A}-\alpha P_{s})q_{A}+(P_{A}-c_{m})(Q_{A}-q_{A})]\)

And the function becomes

\(\Pi ^{b}_{A}=\frac{m}{N}[(P_{A}-\alpha P_{s})(\omega -\frac{P_{A}}{V_{l}})+m(P_{A}-c_{m}) (N-1)(\omega -\frac{P_{A}}{V_{l}})]\)

After solving the first order conditions we obtain the only interior solution

\(P^{b}_{A}=\frac{2\omega NV_{l}+\alpha NV_{s}+\alpha c+2(N-1)c_{m}}{4N}\)

Substituting it back, we obtain the optimal quantity and profit of agents and manufacturers:

\(\begin{array}{rcl} Q^{b}_{A} &{}=&{} \frac{2\omega NV_{l}-[\alpha NV_{s}+\alpha c+2(N-1)c_{m}]}{4NV_{l}};\\ \Pi ^{b}_{M}&{}=&{}\frac{(1-m)(NV_{s}-c)^{2}}{4N^{2}V_{s}}+\frac{(1-m)(\alpha NV_{s}+\alpha c-2c)[2\omega NV_{l}-\alpha NV_{s}-\alpha c-2(N-1)c_{m}]}{8N^{2}V_{l}};\\ \Pi ^{b}_{A}&{}=&{} \frac{m}{16N^{2}V_{l}}[2\omega NV_{l}-\alpha NV_{s}-\alpha c-2(N-1)c_{m}]^{2}. \end{array}\) \(\square\)

1.1.10 Proof of Lemma 5

(a) As the manufacturer is the Stackelberg leader. We first figure out the profit of the agent. Similar to the Hybrid Strategy, we have the constraint

\(\begin{array}{lcl} Q_{ns}&{}=&{}Nq_{ns}=\frac{P_{A}-p_{s}}{V_{l}-V_{s}}-\frac{p_{s}}{V_{s}};\\ Q_{nA}&{}=&{}Nq_{nA}=1-\frac{P_{A}-p_{s}}{V_{l}-V_{s}};\\ Q_{A}&{}=&{}Nq_{A}=\omega -\frac{P_{A}}{V_{l}}. \end{array}\)

Substitute them into the profit function

\(\begin{aligned} \Pi _{A}^{1} = &\, (1 - m)[(P_{A} - P_{s} )q_{{nA}} + (P_{A} - c_{m} )(Q_{{nA}} - q_{{nA}} )] \\ & + m[(P_{A} - P_{s} )q_{A} + (P_{A} - c_{m} )(Q_{A} - q_{A} )] \\ \end{aligned}\)

After solving the first order conditions we obtain the only interior solution

\(P^{1}_{A}=\frac{2V_{l}-mV_{l}-mV_{s}}{2N(V_{l}-mV_{s})}P_{s}+ \frac{V_{l}(V_{l}-V_{s})B}{2(V_{l}-mV_{s})}+\frac{(N-1)c_{m}}{2N}(B=1-m+m\omega )\);

Substituting it back to profit function of the manufacturer, we obtain the optimal price of manufacturer is

\(P^{1}_{s}=\frac{c}{2}+\frac{NV_{s}V_{l}(2V_{l} -mV_{l}-mV_{s})B-mV_{s}(V_{l}-mV_{s})(N-1)c_{m}}{2(2(1-m)V^{2}_{l}+m^{2}V_{s}V_{l}-m^{2}V^{2}_{s})}.\)

(b) We set \(\alpha P_{s}\), \(\alpha \in (0,1]\) as the agent’s wholesale price and think the N-Type consumers include the agents. Then,

\(\begin{array}{ccl} P^{2}_{A}&{}=&{}\frac{(1-m+\alpha )V_{l}-m\alpha V_{s}}{2N(V_{l}-mV_{s})} P_{s}+\frac{V_{l}(V_{l}-V_{s})B}{2(V_{l}-mV_{s})}+\frac{(N-1)c_{m}}{2N};\\ P^{2}_{s}&{}=&{}\frac{\alpha (1+\omega )}{2E}+\frac{[(1-m+\alpha )V_{l}-m \alpha V_{s}]V_{s}-2V_{l}(V_{s}-mV_{s})}{4NV_{l}V_{l}(V_{l}-mV_{s})E} c\\&&+\frac{(V_{l}-2\alpha V_{l}+\alpha V_{s})}{4E(V_{l}-mV_{s})}B+ \frac{(V_{l}-2\alpha V_{l}+\alpha V_{s})(N-1)c_{m}}{4 E NV_{l}(V_{l}-V_{s})}.\\ \\ (E&{}=&{}\frac{V_{l}-\alpha V_{s}}{NV_{s}(V_{l}-V_{s})}+\frac{(V_{l} -2\alpha V_{l}+\alpha V_{s})[(1-m+\alpha )V_{l}-m\alpha V_{s}]}{2NV_{l}(V_{l}-V_{s})(V_{l}-mV_{s})})\\ \end{array}\) \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, H., Deng, Z. et al. Leasing or selling? The channel choice of durable goods manufacturer considering consumers’ capital constraint. Flex Serv Manuf J 34, 317–350 (2022). https://doi.org/10.1007/s10696-021-09429-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-021-09429-4

Keywords

Navigation