Skip to main content
Log in

Seasonal expression of arginine vasotocin mRNA and its correlations to gonadal steroidogenic enzymes and sexually dimorphic coloration during sex reversal in the gilthead seabream (Sparus aurata)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albers HE (2012) The regulation of social recognition, social communication and aggression: vasopressin in the social behavior network. Horm Behav 61:283–292

    Article  CAS  PubMed  Google Scholar 

  • Balment RJ, Lu W, Weybourne E, Warne JM (2006) Arginine vasotocin a key hormone in fish physiology and behavior: a review with insights from mammalian models. Gen Comp Endocr 147:9–16

    Article  CAS  PubMed  Google Scholar 

  • D'Ancona U (1941) Ulteriori osservazioni sulľ ermafroditismo e il differenziamento sessuale delľ orata (Sparus aurata L.). Pubblicazioni della Stazione Zoologica di Napoli 18:313–336

    Google Scholar 

  • Desjardins JK, Fernald RD (2009) Fish sex: why so diverse? Curr Opin Neurobiol 19:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Fink L, Seeger W, Ermert L, Hanze J, Stahl U, Grimminger F, Kummer W, Bohle RM (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Foran CM, Bass AH (1999) Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. Gen Comp Endocr 116:141–152

    Article  CAS  PubMed  Google Scholar 

  • Godwin J (2010) Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrin 31:203–216

    Article  CAS  Google Scholar 

  • Godwin J, Thompson R (2012) Nonapeptides and social behavior in fishes. Horm Behav 61:230–238

    Article  CAS  PubMed  Google Scholar 

  • Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165(3):352–366

    Article  CAS  PubMed  Google Scholar 

  • Happe A, Zohar Y (1988) Self-fertilization in the protandrous hermaphrodite Sparus aurata: development of the technology. In: Zohar, Brenton (eds) Reproduction in fish: basic and applied aspects in endocrinology and genetics. INRA Press, Paris, pp 177–180

    Google Scholar 

  • Higa M, Ogasawara K, Sakaguchi A, Nagahama Y, Nakamura M (2003) Role of steroid hormones in sex change of protogynous wrasse. Fish Physiol Biochem 28(1–4):149–150

    Article  CAS  Google Scholar 

  • Huffman LS, Hinz FI, Wojcik S, Aubin-Horth N, Hofmann HA (2014) Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. Gen Comp Endocrinol 212:106–113

    Article  PubMed  Google Scholar 

  • Insel TR, Young L (2000) Neuropeptides and the evolution of social behavior. Curr Opin Neurobio 10:784–789

    Article  CAS  Google Scholar 

  • Iwata E, Nagai Y, Sasaki H (2010) Social rank modulates brain arginine vasotocin immunoreactivity in false clown anemonefish (Amphiprion ocellaris). Fish Physiol Biochem 36:337–345

    Article  CAS  PubMed  Google Scholar 

  • Kleszczynska A, Kulczykowska E (2013) Stocking density influences brain arginine vasotocin (AVT) and isotocin (IT) levels in males and females of three-spined stickleback (Gasterosteus aculeatus). Gen Comp Endocr 183:14–16

    Article  CAS  PubMed  Google Scholar 

  • Kleszczynska A, Sokolowska E, Kulczykowska E (2012) Variation in brain arginine vasotocin (AVT) and isotocin (IT) levels with reproductive stage and social status in males of three-spined stickleback (Gasterosteus aculeatus). Gen Comp Endocr 175:290–296

    Article  CAS  PubMed  Google Scholar 

  • Kulczykowska E, Cardoso SC, Gozdowska M, Andre GI, Paula JR, Slebioda M, Oliveira RF, Soares MC (2015) Brain levels of nonapeptides in four labrid fish species with different levels of mutualistic behavior. Gen Comp Endocr 222:99–105

    Article  CAS  PubMed  Google Scholar 

  • Kline RJ, Holt GJ, Khan IA (2016) Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis. Gen Comp Endocr 225:33–44

    Article  CAS  PubMed  Google Scholar 

  • Kline RJ, Khan IA, Holt GJ (2011) Behavior, color change and time for sexual inversion in the protogynous grouper (Epinephelus adscensionis). PLoS One 6:e19576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kuwamura T, Suzuki S, Kadota T (2011) Reversed sex change by widowed males in polygynous and protogynous fishes: female removal experiments in the field. Naturwissenschaften 98:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Lema SC, Slane MA, Salvesen KE, Godwin J (2012) Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (Thalassoma bifasciatum). Gen Comp Endocr 179(3):451–464

    Article  CAS  PubMed  Google Scholar 

  • Lema SC, Sanders KE, Walti KA (2015) Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. J Neuroendocrinol 27(2):142–157

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Sadovy Y (2004) The influence of social factors on adult sex change and juvenile sexual differentiation in a diandric, protogynous epinepheline, Cephalopholis boenak (Pisces, Serranidae). J Zool 264:239–248

    Article  Google Scholar 

  • Lorenzi V, Earley RL, Grober MS (2006) Preventing behavioural interactions with a male facilitates sex change in female bluebanded gobies, Lythrypnus dalli. Behav Ecol Sociobiol 59:715–722

    Article  Google Scholar 

  • Mank JE, Promislow DEL, Avise JC (2006) Evolution of alternative sex-determining mechanisms in teleost fishes. Biol J Linn Soc 87:83–93

    Article  Google Scholar 

  • Maruska KP (2009) Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. Gen Comp Endocr 160:194–204

    Article  CAS  PubMed  Google Scholar 

  • Mototiashi E, Hamabata T, Hironorl A (2008) Structure of neurohypophysial hormone genes and changes in the levels of expression dring spawning season in grass puffer (Takifugu niphobles). Gen Comp Endocr 155:456–463

    Article  Google Scholar 

  • Nagarajan G, Aruna A, Chang CF (2015) Neuropeptide arginine vasotocin positively affects neurosteroidogenesis in the early brain of grouper, Epinephelus coioides. J Neuroendocrinology 27(9):718–736

    Article  CAS  Google Scholar 

  • Nozu R, Kojima Y, Nakamura M (2009) Short term treatment with aromatase inhibitor induces sex change in the protogynous wrasse, Halichoeres trimaculatus. Gen Comp Endocr 161:360–364

    Article  CAS  PubMed  Google Scholar 

  • Perry AN, Grober MS (2003) A model for social control of sex change: interactions of behavior, neuropeptides, glucocorticoids, and sex steroids. Horm Behav 43:31–38

    Article  CAS  PubMed  Google Scholar 

  • Quinitio GF, Caberoy NB, Reyes DM (1997) Induction of sex change in female Epinephelus coioides by social control. Bamidgeh 49:77–83

    Google Scholar 

  • Reyes-Tomassini J (2009) Behavioral and neuroendocrine correlates of sex change in the gilthead seabream Sparus aurata. Thesis. University of Maryland

  • Reyes-Tomassini J, Wong T, Zohar Y (2013) GnRH isoforms expression in relation to the gonadal cycle and to dominance rank in the gilthead seabream, Sparus aurata. Fish Physiol Biochem 39:1681

    Article  CAS  Google Scholar 

  • Ripley JL, Foran CM (2010a) Quantification of whole brain arginine vasotocin for two Syngnathus pipefishes: elevated concentrations correlated with paternal brooding. Fish Physiol Biochem 36:867–874

    Article  CAS  PubMed  Google Scholar 

  • Ripley JL, Foran CM (2010b) Elevated whole brain arginine vasotocin with Aroclor 1254 exposure in two Syngnathus pipefishes. Fish Physiol Biochem 36:917–921

    Article  CAS  PubMed  Google Scholar 

  • Semsar K, Godwin J (2003) Social influences on the arginine vasotocin system are independent of gonads in a sex-changing fish. J Neuroscience 23:4386–4393

    CAS  PubMed  Google Scholar 

  • Shapiro DY (1980) Serial female sex change after simultaneous removal of males from social groups of a coral reef fish. Science 209:1136–1137

    Article  CAS  PubMed  Google Scholar 

  • Sokolowska E, Kleszczynska A, Nietrzeba M, Kulczykowska E (2015) Annual changes in brain concentration of arginine vasotocin and isotocin correspond with phases of reproductive cycle in round goby, Neogobius melanostomus. Chronobiol Int 32(7):917–924

    Article  CAS  PubMed  Google Scholar 

  • Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environ Toxicol Phar 34(1):1–13

    Article  CAS  Google Scholar 

  • Wong TT, Gothilf Y, Zmora N, Kight KE, Meiri I, Elizur A, Zohar Y (2004) Developmental expression of three forms of gonadotropin-releasing hormone and ontogeny of the hypothalamic-pituitary-gonadal axis in gilthead seabream (Sparus aurata). Biol Reprod 71:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Wong TT, Ijiri S, Zohar Y (2006) Molecular biology of ovarian aromatase in sex reversal: complementary DNA and 5 '-flanking region isolation and differential expression of ovarian aromatase in the gilthead seabream (Sparus aurata). Biol Reprod 74:857–864

    Article  CAS  PubMed  Google Scholar 

  • Zohar Y, Abraham M, Gordin H (1978) The gonadal cycle of the captivity reared hermaphroditic teleost, Sparus aurata (L.) during the first two years of life. Ann Biol Anim Biochem Biophys 18:877–882

    Article  Google Scholar 

  • Zohar Y, Billard R, Weil C (1984) La reproduction de la daurade et du bar: Le cycle sexuel et l’induction de la ponte. In: Barnabe G (ed) Billard R. INRA Press Paris, Aquaculture de Bar et des Sparides. edn, pp 3–24

    Google Scholar 

Download references

Acknowledgements

The present work was supported by the NOAA-Educational Partnership Program (EPP)-funded Living Marine Resources Cooperative Science Center and the NOA-EPP funded Graduate Science Program. We are also thankful to Steven Rodgers, Eric Evans, Chris Tollini, and John Stubblefield for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Reyes-Tomassini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Tomassini, J.J., Wong, TT. & Zohar, Y. Seasonal expression of arginine vasotocin mRNA and its correlations to gonadal steroidogenic enzymes and sexually dimorphic coloration during sex reversal in the gilthead seabream (Sparus aurata). Fish Physiol Biochem 43, 823–832 (2017). https://doi.org/10.1007/s10695-017-0338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0338-3

Keywords

Navigation