Skip to main content
Log in

Mianserin affects alarm reaction to conspecific chemical alarm cues in Nile tilapia

  • Original Paper
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, I show that mianserin, a chemical with serotonin and adrenoceptor antagonist activities, increases fish vulnerability to a potential predator threat, when prey fish must deal with this threat based on conspecific chemical alarm cues. For that, I evaluated whether mianserin, diluted in the water, influences the behavioral responses of Nile tilapia (Oreochromis niloticus) to conspecific skin extract (chemical alarm cues). I found that, while mianserin did not abolished antipredator responses, this drug mitigates some components of this defensive reaction. Thus, a potential decrease in serotonin and adrenergic activities reduces the ability of dealing with predators when perceiving conspecific chemical alarm cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu MS, Koakoski G, Ferreira D, Oliveira TA, Rosa JGS, Gusso D et al (2014) Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS ONE 9:e103232. doi:10.1371/journal.pone.0103232

    Article  PubMed  PubMed Central  Google Scholar 

  • Abreu MS, Giacomini ACV, Gusso D, Rosa JGS, Koakoski G, Kalichaka F, Idalêncio R, Oliveira TA, Barcellos HHA, Bonan CD, Barcellos LJG (2016) Acute exposure to waterborne psychoactive drugs attract zebrafish. Comp Biochem Physiol Part C Toxicol Pharmacol 179:37–43. doi:10.1016/j.cbpc.2015.08.009

    Article  CAS  Google Scholar 

  • Alemadi SD, Wisenden BD (2002) Antipredator response to injury-released chemical alarm cues by convict cichlid young before and after independence from parental protection. Behaviour 139:603–611

    Article  Google Scholar 

  • Barbosa-Junior A, Alves FL, Pereira ADF, Ide LM, Hoffmann A (2012) Behavioral characterization of the alarm reaction and anxiolytic-like effect of acute treatment with fluoxetine in piaucu fish. Physiol Behav 105:784–790

    Article  PubMed  Google Scholar 

  • Barki A, Volpato GL (1998) Early social environment and the fighting behaviour of young O. niloticus (Pisces, Cichlidae). Behaviour 135:913–929

    Article  Google Scholar 

  • Barreto RE, Barbosa A, Giassi ACC, Hoffmann A (2010) The club cell and behavioural and physiological responses to chemical alarm cues in the Nile tilapia. Mar Freshw Behav Physiol 43:75–81

    Article  Google Scholar 

  • Barreto RE, Barbosa A, Hoffmann A (2012) Ventilatory responses to skin extract in catfish. Aquat Biol 15:205–214

    Article  Google Scholar 

  • Barreto RE, Miyai CA, Sanches FHC, Giaquinto PC, Delicio HC, Volpato GL (2013) Blood cues induce antipredator behavior in Nile tilapia conspecifics. PLoS ONE 8:e54642. doi:10.1371/journal.pone.0054642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto RE, Barbosa-Junior A, Urbinati EC, Hoffmann A (2014) Cortisol influences the antipredator behavior induced by chemical alarm cues in the Frillfin goby. Horm Behav 65:394–400. doi:10.1016/j.yhbeh.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814–815. doi:10.1126/science.1226850

    Article  CAS  PubMed  Google Scholar 

  • Brown GE, Foam PE, Cowell HE, Fiore PG, Chivers DP (2004) Production of chemical alarm cues in convict cichlids: the effects of diet, body condition and ontogeny. Ann Zool Fenn 41:487–499

    Google Scholar 

  • Burrows MT (1994) An optimal foraging and migration model for juvenile plaice. Evol Ecol 8:125–149

    Article  Google Scholar 

  • Burrows MT, Gibson RN (1995) The effects of food, predation risk and endogenous rhythmicity on the behavior of juvenile plaice, Pleuronectes platessa L. Anim Behav 50:41–52

    Article  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352

    Article  Google Scholar 

  • Fick J, Lindberg RH, Parkkonen J, Arvidsson B, Tysklind M, Larsson DGJ (2010) Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents. Environ Sci Technol 44:2661–2666

    Article  CAS  PubMed  Google Scholar 

  • Freitas RHA, Volpato GL (2008) Behavioral response of Nile tilapia to an allopatric predator. Mar Freshw Behav Physiol 41:267–272

    Article  Google Scholar 

  • Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 207:223–231

    Article  PubMed  Google Scholar 

  • Giaquinto PC, Volpato GL (2001) Hunger suppresses the onset and the freezing component of the antipredator response to conspecific skin extract in pintado catfish. Behaviour 138:1205–1214

    Article  Google Scholar 

  • Giebultowicz J, Nalecz-Jawecki G (2014) Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol Environ Saf 104:103–109

    Article  CAS  PubMed  Google Scholar 

  • Griebel G (1993) Système sérotoninergique et réactivité émotionnelle chez le rat et chez la souris. Approche pharmacologique. Univ Louis Pasteur, Strasbourg

    Google Scholar 

  • Griebel G, Rodgers RJ, Perrault G, Sanger DJ (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 57:817–827

    Article  CAS  PubMed  Google Scholar 

  • Gyssels FGM, Stoks R (2005) Threat-sensitive responses to predator attacks in a damselfly. Ethology 111:411–423

    Article  Google Scholar 

  • Houtman R, Dill LM (1994) The influence of substrate color on the alarm response of tidepool sculpins (Oligocottus maculosus, Pisces, Cottidae). Ethology 96:147–154

    Article  Google Scholar 

  • Kopack CJ, Broder ED, Lepak JM, Fetherman ER, Angeloni LM (2015) Behavioral responses of a highly domesticated, predator naive rainbow trout to chemical cues of predation. Fish Res 169:1–7

    Article  Google Scholar 

  • Lawrence BJ, Smith RJF (1989) Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J Chem Ecol 15:209–218

    Article  CAS  PubMed  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioural decisions made under the risk of predation: a review and prospectus. Can J Zool 68:610–640

    Article  Google Scholar 

  • Mager EM, Medeiros LR, Lange AP, McDonald MD (2012) The toadfish serotonin 2A (5-HT(2A)) receptor: molecular characterization and its potential role in urea excretion. Comp Biochem Physiol A Mol Integr Physiol 163:319–326. doi:10.1016/j.cbpa.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Luque-Larena JJ, López P (2009) When to run from an ambush predator: balancing crypsis benefits with costs of fleeing in lizards. Anim Behav 78:1011–1018

    Article  Google Scholar 

  • Mitchell MD, Cowman PF, McCormick MI (2012) Chemical alarm cues are conserved within the coral reef fish family pomacentridae. PLoS ONE 7:e47428. doi:10.1371/journal.pone.0047428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyai CA, Sanches FHC, Pinho-Neto CF, Barreto RE (2016) Effects of predator odour on antipredator responses of Nile tilapia. Physiol Behav 165:22–27. doi:10.1016/j.physbeh.2016.06.033

    Article  CAS  PubMed  Google Scholar 

  • Nikaido Y, Aluru N, McGuire A, Park YJ, Vijayan MM, Takemura A (2010) Effect of cortisol on melatonin production by the pineal organ of tilapia, O. mossambicus. Comp Biochem Physiol A: Mol Integr Physiol 155:84–90

    Article  Google Scholar 

  • Norton WH, Folchert A, Bally-Cuif L (2008) Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 511:521–542

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Bernier NJ (1999) The acute humoral adrenergic stress response in fish: facts and fiction. Aquaculture 177:285–295

    Article  CAS  Google Scholar 

  • Ramasamy RA, Allan BJM, McCormick MI (2015) Plasticity of escape responses: prior predator experience enhances escape performance in a coral reef fish. PLoS ONE 10:e0132790. doi:10.1371/journal.pone.0132790

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruuskanen JO, Peitsaro N, Kaslin JV, Panula P, Scheinin M (2005) Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem 94:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Sanches FHC, Miyai CA, Pinho-Neto CF, Barreto RE (2015) Stress responses to chemical alarm cues in Nile tilapia. Physiol Behav 149:8–13. doi:10.1016/j.physbeh.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Fritzky L, Williams J, Heumann C, Yochum M, Pattar K, Noppert G, Mock V, Hawley E (2012) Cloning and expression of a zebrafish 5-HT(2C) receptor gene. Gene 502:108–117. doi:10.1016/j.gene.2012.03.070

    Article  CAS  PubMed  Google Scholar 

  • Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (D. rerio). Behav Brain Res 188:168–177

    Article  CAS  PubMed  Google Scholar 

  • van der Ven K, Keil D, Moens LN, Van Leemput K, Van Remortelt P, De Coen WM (2006) Neuropharmaceuticals in the environment: mianserin-induced neuroendocrine disruption in zebrafish (D. rerio) using cDNA microarrays. Environ Toxicol Chem 25:2645–2652. doi:10.1897/05-495R.1

    Article  PubMed  Google Scholar 

  • Winberg S, Myrberg AA Jr, Nilsson GE (1993) Predator exposure alters brain serotonin metabolism in bicolour damselfish. NeuroReport 4:399–402

    Article  CAS  PubMed  Google Scholar 

  • Wolkers CP, Serra M, Urbinati EC (2015) Social challenge increases cortisol and hypothalamic monoamine levels in matrinxã (Brycon amazonicus). Fish Physiol Biochem 41:1501–1508. doi:10.1007/s10695-015-0102-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am thankful for technical assistance of Mr. A. C. B. Tardivo. This study was financially supported by the Fundação para o Desenvolvimento da UNESP—FUNDUNESP (Process 00017/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Egydio Barreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, R.E. Mianserin affects alarm reaction to conspecific chemical alarm cues in Nile tilapia. Fish Physiol Biochem 43, 193–201 (2017). https://doi.org/10.1007/s10695-016-0279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0279-2

Keywords

Navigation