Skip to main content
Log in

Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g−1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AOAC (1998) Official methods of analysis, 16th edn. Association of Analytical Chemists, Washington, DC, USA

  • Auperin B, Baroiller JF, Ricordel MJ, Fostier A, Prunet P (1997) Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshwater-adapted tilapia (Oreochromis niloticus). Gen Comp Endocr 4:35–44

    Article  Google Scholar 

  • Bagnyukova TV, Chahrak OI, Lushchak VI (2006) Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat Toxicol 78:325–331

    Article  CAS  PubMed  Google Scholar 

  • Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    Article  PubMed  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  PubMed  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Bengmark S (2001) Nutritional modulation of acute and chronic phase responses. Nutrition 17:489–495

    Article  CAS  PubMed  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272

    Article  PubMed  Google Scholar 

  • Bonga SEW (1997) The stress response in fish. Physiol Rev 77:591–625

    Google Scholar 

  • Chatzifotis S, Muje P, Pavlidis M, Agren J, Paalavuo M, Molsa H (2004) Evolution of tissue composition and serum metabolites during gonadal development in the common dentex (Dentex dentex). Aquaculture 236:557–573

    Article  CAS  Google Scholar 

  • Chen D, Yang Z, Chen X, Huang Y, Yin B, Guo F, Zhao H, Huang J, Wu Y, Gu R (2014) Effect of Lactobacillus rhamnosus hsryfm 1301 on the gut microbiota and lipid metabolism in rats fed a high-fat diet. J Microbiol Biotechnol 25(5):687–695

    Article  Google Scholar 

  • Costas B, Conceição LE, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76

    Article  CAS  Google Scholar 

  • Dalmo RA, Ingebrigtsen K, Bogwald J (1997) Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20:241–273

    Article  CAS  Google Scholar 

  • Das A, Nakhro K, Chowdhury S, Kamilya D (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol 35(5):1547–1553

    Article  CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S (2016a) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454:243–251

    Article  CAS  Google Scholar 

  • Dawood MAO, Koshio S (2016b) Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev Aquac. doi:10.1111/raq.12163

    Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015a) Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili Juveniles. BioMed Res Int 2015:132–135

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015b) Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of Red sea bream, Pagrus major. Aquaculture 442:29–36

    Article  CAS  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015c) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss AS (2016a) Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol 49:275–285

    Article  CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2016b) Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac Nutr 22(4):923–932

    Article  CAS  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2016c) Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol 54:266–275

    Article  CAS  PubMed  Google Scholar 

  • Falcinelli S, Picchietti S, Rodiles A, Cossignani L, Merrifield DL, Taddei AR, Maradonna F, Olivotto I, Gioacchini G, Carnevali O (2015) Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci Rep 2015:5

  • Gerwick L, Steinhauer R, Lapatra S, Sandell T, Ortuno J, Hajiseyedjavadi N et al (2002) The acute phase response of rainbow trout (Oncorhynchus mykiss) plasma proteins to viral, bacterial and fungal inflammatory agents. Fish Shellfish Immunol 12:229–242

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AT, Maita M, Futami K, Endo M, Katagiri T (2011) Effects of a probiotic bacterial Lactobacillus rhamnosus dietary supplement on the crowding stress response of juvenile Nile tilapia Oreochromis niloticus. Fish Sci 77(4):633–642

    Article  Google Scholar 

  • Hernandez LHH, Barrera TC, Mejia JC, Mejia GC, Del Carmen M, Dosta M, De Lara Andrade R, Sotres JAM (2010) Effects of the commercial probiotic Lactobacillus casei on the growth, protein content of skin mucus and stress resistance of juveniles of the Porthole livebearer Poecilopsis gracilis (Poecilidae). Aquac Nutr 16:407–411

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Soleimani N, Ringø E (2014) Effects of dietary fructo-oligosaccharide supplementation on the growth performance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. Br J Nutr 112(08):1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Iwama GK, Afonso LOB, Vijayan MM (2006) Stress in fish. In: Evans DH, Claiborne JB (eds) The physiology of fishes. Taylor & Francis, Boca Raton, pp 319–342

    Google Scholar 

  • Janssens P, Waterman J (1988) Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver pieces cultured in vitro. Comp Biochem Physiol A Physiol 91:451–455

    Article  Google Scholar 

  • Kakuta I, Kurokura H, Nakamura H, Yamauchi K (1996) Enhancement of the nonspecific defense activity of the skin mucus of red sea bream by oral administration of bovine lactoferrin. Suisanzoshoku 44:197–202

    CAS  Google Scholar 

  • Kesarocodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14

    Article  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, del Río MPM, Míguez JM, Soengas JL, Mancera JM (2002) Energy metabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 27:179–188

    Article  Google Scholar 

  • Lara-Flores M (2011) The use of probiotic in aquaculture: an overview. Int Res J Microbiol 2:471–478

    Google Scholar 

  • Li P, Burr GS, Gatlin DM, Hume ME, Patnaik S, Castille FL, Lawrence AL (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. J Nutr 137:2763–2768

    CAS  PubMed  Google Scholar 

  • Liu B, Xu P, Xie J, Ge X, Xia S, Song C, Chen R (2014) Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol 40(2):595–602

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Shi H, Guo O, Yu Y, Wang A, Lv F, Shen W (2016) Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. doi:10.1016/j.fsi.2016.02.020

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maule A, Tripp R, Kaattari S, Schreck C (1989) Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J Endocrinol 120:135–142

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RT, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1):1–18

    Article  Google Scholar 

  • Ming J, Xie J, Xu P, Ge X, Liu W, Ye J (2012) Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70 s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. Fish Shellfish Immunol 32(5):651–661

    Article  CAS  PubMed  Google Scholar 

  • Möck A, Peters G (1990) Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution. J Fish Biol 37:873–885

    Article  Google Scholar 

  • Moe YY, Koshio S, Teshima S, Ishikawa M, Matsunaga Y, Panganiban AJ (2004) Effect of vitamin C derivatives on the performance of larval kuruma shrimp, Marsupenaeus japonicus. Aquaculture 242:501–512

    Article  CAS  Google Scholar 

  • Nikoskelainen S, Ouwehand AC, Bylund G, Salminena S, Liliusa EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452

    Article  CAS  PubMed  Google Scholar 

  • Palaksha KJ, Shin GW, Kim YR, Jung TS (2008) Evaluation of non-specific immune components from the skin mucus of Olive Flounder (Paralichthys olivaceus). Fish Shellfish Immunol 24:479–488

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Kiron V, Satoh S, Watanabe T (2010) Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiol Biochem 36(4):969–977

    Article  CAS  PubMed  Google Scholar 

  • Periera IAD, Gibson RG (2002) Effect of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37:259–281

    Article  Google Scholar 

  • Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91:e92–e97

    Article  CAS  PubMed  Google Scholar 

  • Quan S, Gill HS (2002) Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR 20) against Escherichia coli 0157:H7 infection in mice. FEMS Immunol Med Microbiol 34:59–64

    Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2013) Effects of inactivated Enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity, and disease protection in rainbow trout. N Am J Aquac 75:416–428

    Article  Google Scholar 

  • Rollo A, Sulpizio R, Nardi M, Silvi S, Orpianesi C, Caggiano M, Cresci A, Carnevali O (2006) Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol Biochem 32:167–177

    Article  CAS  Google Scholar 

  • Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172:63–92

    Article  CAS  Google Scholar 

  • Salinas I, Abelli L, Bertoni F, Picchietti S, Roque A, Furones D, Cuesta A, Meseguer J, Esteban MA (2008) Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25:114–123

    Article  CAS  PubMed  Google Scholar 

  • Salze G, McLean E, Schwarz M, Craig S (2008) Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture 274:148–152

    Article  CAS  Google Scholar 

  • Sang HM, Fotedar R (2009) Dietary supplementation of mannan oligosaccharide improves the immune responses and survival of marron, Cherax tenuimanus (Smith, 1912) when challenged with different stressors. Fish Shellfish Immunol 27(2):341–348

    Article  CAS  PubMed  Google Scholar 

  • Small BC (2004) Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors. Aquaculture 238:469–481

    Article  CAS  Google Scholar 

  • Soleimani N, Hoseinifar SH, Merrifield DL, Barati M, Abadi ZH (2012) Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 32(2):316–321

    Article  CAS  PubMed  Google Scholar 

  • Soltanian S, Adloo MN, Hafeziyeh M, Ghadimi N (2014) Effect of β-Glucan on cold-stress resistance of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878). Vet Med Czech 59(9):440–446

    Google Scholar 

  • Svoboda M (2001) Stress in fishes (a review). Bull VURH Vodnany 37:169–191

    Google Scholar 

  • Taoka Y, Maeda H, Jy JO, Jeon MJ, Bai SC, Lee WJ, Yuge K, Koshio S (2006a) Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish Sci 72:310–321

    Article  CAS  Google Scholar 

  • Taoka Y, Maeda H, Jy JO, Kim S, Park S, Yoshikawa T, Sakata T (2006b) Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish Sci 72:755–766

    Article  CAS  Google Scholar 

  • Tatsumi N, Tsuji R, Yamada T, Kubo K, Matsuda T (2000) Spot chem. EZ SP- 4430 no kiso teki kento. J Clinic Lab Instr Reag 23(6):427–433

    Google Scholar 

  • Wang Y, Li J, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4

    Article  Google Scholar 

  • Xie J, Liu B, Zhou Q, Su Y, He Y, Pan L, Xu P (2008) Effects of anthraquinone extract from rhubarb Rheum officinale Bail on the crowding stress response and growth of common carp Cyprinus carpio var. Jian. Aquaculture 281(1):5–11

    Article  CAS  Google Scholar 

  • Zhang CN, Li XF, Tian HY, Zhang DD, Jiang GZ, Lu KL, Liu GX, Li WB (2015) Effects of fructooligosaccharide on immune response, antioxidant capability and HSP70 and HSP90 expressions of blunt snout bream (Megalobrama amblycephala) under high ammonia stress. Fish Physiol Biochem 41(1):203–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Egyptian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. O. Dawood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, M.A.O., Koshio, S., Ishikawa, M. et al. Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol Biochem 43, 179–192 (2017). https://doi.org/10.1007/s10695-016-0277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0277-4

Keywords

Navigation