Skip to main content
Log in

Differential regulation of pro- and antiapoptotic proteins in fish adipocytes during hypoxic conditions

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Worldwide, the frequencies and magnitudes of hypoxic events in estuarine waters have increased considerably over the past two decades. Fish populations are suitable indicators for the assessment of quality of aquatic ecosystems and often comprise a variety of adaptation systems by triggering oxidants, antioxidants and hypoxia-responsive signaling proteins. Signaling pathway may lead to cell survival or cell death which is fine-tuned by both positive and negative factors, which includes hypoxia-inducible factor-1α (HIF1α), heat-shock protein-70 (HSP70), phospho-c-Jun N-terminal kinase 1/2 (p-JNK1/2) and apoptosis signal-regulating kinase-1 (ASK1). In the present study, we attempt to determine stress-mediated signaling changes and molecular mechanism behind the cell survival by comparing adipocytes of fish from field hypoxic condition and laboratory-induced hypoxic condition (in vitro hypoxia). Comparison of field and laboratory studies in fish adipocytes showed differential expression of HIF1α, HSP70, p-JNK1/2 and ASK1 with altered oxidants and antioxidants. Further, the results also suggest that in vitro hypoxic conditions mimic field hypoxic conditions. Trends of hypoxia response were same in in vitro hypoxia of control adipocytes as in Ennore estuary, and hypoxia response was more pronounced in the test adipocytes under in vitro hypoxic condition. Results of the present work suggest that hypoxia is the major crusade of water pollutants affecting fish by differential regulation of pro- and antiapoptotic proteins probably through HSP70. This may play a vital role by providing cytoprotection in pollutant-induced stressed fish adipocytes substantiated by the in vitro hypoxic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams SM (2005) Assessing cause and effect of multiple stressors on marine systems. Mar Pollut Bull 51:649–657

    Article  CAS  PubMed  Google Scholar 

  • Atsushi M, Hideki N, Kei T, Kohsuke T, Hidenori I (2002) Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal 4(3):415–425

    Article  Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  CAS  PubMed  Google Scholar 

  • Beer RF, Seizer TW (1952) Spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. J Biol Chem 115:130–140

    Google Scholar 

  • Biamonti G, Caceres JF (2009) Cellular stress and RNA splicing. Trends Biochem Sci 34:146–153

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  CAS  PubMed  Google Scholar 

  • Braide SA, Izonfuo WAL, Adiukwu PU, Chindah AC, Obunwo CC (2004) Water quality of Miniweja stream, swamp forest stream receiving non-point source waste discharges in Eastern Niger Delta. Niger Sci Afr 3:1–8

    Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Cuevas BD, Abell AN, Johnson GL (2007) Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26(22):3159–3171

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    Article  CAS  PubMed  Google Scholar 

  • Elheiga AL, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase. Science 291:2613–2616

    Article  PubMed  Google Scholar 

  • Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta 46:105–111

    Article  CAS  PubMed  Google Scholar 

  • Famulla S, Schlich R, Sell H, Eckel J (2012) Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis. Adipocyte 1(3):132–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VJ, Sherman MYE (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G (2002) Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 383:1715–1725

    CAS  PubMed  Google Scholar 

  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He ML, Yang WZ, Youv JS, Chaves AV, Mir PS, Benchaar C, McAllister TA (2009) Effect of garlic oil on fatty acid accumulation and glycerol-3-phosphate dehydrogenase activity in differentiating adipocytes. Asian-Aust J Anim Sci 22(12):1686–1692

    Article  CAS  Google Scholar 

  • He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J (2011) Regulation of HIF-1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab 300(5):877–885

    Article  Google Scholar 

  • Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Mivechi NF, Moskophidis D (2001) Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 Gene. Mol Cell Biol 21(24):8575–8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WJ, Xia LM, Zhu F, Huang B, Zhou C, Zhu HF, Wang B, Chen B, Lei P, Shen GX, Tian D (2009) Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 124:298–305

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 92:464–468

    Article  Google Scholar 

  • Jang HJ, Kwak JH, Cho EY, We YM, Lee YH, Kim SC, Han DJ (2008) Glutamine induces heat-shock protein-70 and glutathione expression and attenuates ischemic damage in rat islets. Transpl Proc 40:2581–2584

    Article  CAS  Google Scholar 

  • Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin- proteasome pathway. J Biol Chem 274:6519–6525

    Article  CAS  PubMed  Google Scholar 

  • Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Schlattner MT, Aasum E, Bogdanova A, Perriard E (2009) Activation of a HIF1a-PPARg axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–524

    Article  CAS  PubMed  Google Scholar 

  • Krishnan J, Danzer C, Simka T, Ukropec J, Walter MK, Kumpf S, Mirtschink P, Ukropcova B, Gasperikova D, Pedrazzini T, Krek W (2012) Dietary obesity-associated Hif1a activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD + system. Genes Dev 26:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Lee JJ, Seo JJS (2005) Mechanisms of signal transduction: HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. Biol Chem 280:6634–6641

    Article  CAS  Google Scholar 

  • Macia L, Viltart O, Verwaerde C, Delacre M, Delanoye A, Grangette C, Wolowczuk I (2006) Genes involved in obesity; adipocytes, brain and microflora. Genes Nutr 1:189–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariana C, Cecilia A, Cecilia VR (2008) Differences in lipogenesis and lipolysis in obese and non-obese adult human adipocytes. Biol Res 41:197–204

    Google Scholar 

  • Merino JJ, Roncero C, Gasque MJO, Naddaf Ahmad, González MP (2014) Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro. Int J Mol Sci 15(2):2475–2493

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biochem 247:3170–3175

    CAS  Google Scholar 

  • Moustaid N, Jones BH, Taylor JW (1996) Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J Nutr 126:865–870

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi M, Yagi K (1979) Assay for lipid peroxides in animal tissue with thiobarbituric acid reaction. Ann Biochem 95:351–354

    Article  CAS  Google Scholar 

  • Padmini E, Lavanya D (2014) Differential expression of heat shock proteins and inflammatory changes in preeclamptic placental explants. Int J Sci Res 3(4):858–864

    Google Scholar 

  • Padmini E, Parimala P (2014) Cytoprotective role of hemeoxygenase-1 in polluted estuarine Mugil cephalus. IAJLB 2(1):32–46

    Google Scholar 

  • Padmini E, Parimala P (2015) Role of HSP70 and the associated signaling molecules in fish adipocytes during pollutants induced hypoxia. IOSR J Environ Sci Toxicol Food Technol 9(7):16–26

    Google Scholar 

  • Padmini E, Tharani J (2014) Heat- shock protein 70 modulates apoptosis signal-regulating kinase 1 in stressed hepatocytes of Mugil cephalus. Fish Physiol Biochem 40(5):1573–1585

    Article  CAS  PubMed  Google Scholar 

  • Padmini E, Vijaya Geetha B (2007a) A comparative seasonal pollution assessment study on estuary with respect to metal accumulation in Mugil cephalus. Oceanol Hydrobiol Stud 35:1–13

    Google Scholar 

  • Padmini E, Vijaya Geetha B (2007b) Seasonal influences on water quality parameters and pollution status of the Ennore estuary, Tamilnadu. Ind J Environ Hydrol 15:1–9

    Google Scholar 

  • Padmini E, Vijaya Geetha B (2009) Modulation of ASK1 expression during overexpression of Trx and HSP70 in stressed fish liver mitochondria. Cell Stress Chaperon 14(5):459–467

    Article  CAS  Google Scholar 

  • Pond CM (1998) The fats of life. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex, specific application to the determination of vitamin E. Ann Biochem 26(9):337–341

    Article  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32:389–397

    Article  CAS  PubMed  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated adipocytes. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    CAS  PubMed  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumberger JM, Wu T, Hering MA, Marshall S (2003) Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: effects of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase mRNA levels. J Biol Chem 278:28547–28552

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1996) Oxidative stress: oxidants and antioxidants. J Physiol 491:S2

    Google Scholar 

  • Song J, Cho KJ, Cheon SY, Kim SH, Park KA, Lee WT, Lee JE (2013) Apoptosis signal-regulating kinase 1 (ASK1) is linked to neural stem cell differentiation after ischemic brain injury. Exp Mol Med 45:69

    Article  Google Scholar 

  • Sottile V, Seuwen K (2001) A high-capacity screen for adipogenic differentiation. Anal Biochem 293:124–128

    Article  CAS  PubMed  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    CAS  PubMed  Google Scholar 

  • Strese S, Fryknas M, Larsson R, Gullbo J (2013) Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer 13:331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. May, Appendix 3, Appendix 3B 18432654 (P, S, E, B, D)

  • Strosznajder J, Domanska-Janik K (1980) Effect of anoxia and hypoxia on brain lipid metabolism. Neurochem Res 5:583–589

    Article  CAS  PubMed  Google Scholar 

  • Subjeck JR, Shyy TT (1986) Stress protein systems of mammalian cells. Am J Physiol 250:1–17

    Google Scholar 

  • Sun K, Halberg N, Khan M, Magalang UJ, Scherera PE (2013) Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol Cell Biol 33(5):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76(9):4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184:285–293

    Article  CAS  PubMed  Google Scholar 

  • Volodymyr I, Ludmyla P, Alice AM, Lima MH (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 280:100–107

    Google Scholar 

  • Welker AF, Moreira DC, Campos EG, Hermes-Lima M (2013) Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A: Mol Integr Physiol 165:384–404

    Article  CAS  Google Scholar 

  • Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheaton WW, Chandel NS (2011) Hypoxia- hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 300:385–393

    Article  Google Scholar 

  • Yokoi I, Habu H, Kabuto H, Mori A (1996) Analysis of nitrite, nitrate, and nitric oxide synthase activity in brain tissue by automated flow injection technique methods. Enzymol 268:152–159

    Article  CAS  Google Scholar 

  • Zhang X, Lam KSL, Ye H, Chung SK, Zhou M, Wang Y, Xu A (2010) Adipose tissue-specific inhibition of hypoxia-inducible factor 1 α induces obesity and glucose intolerance by impeding energy expenditure in mice. J Biol Chem 285:32869–32877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Golden T, Aragon V, Honkanen RE (2004) Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade. J Biol Chem 279(45):46595–46605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project funded by Department of Science and Technology, New Delhi, India, is acknowledged, Project Referral Number—DST: SB/SO/AS-046/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Ekambaram.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekambaram, P., Parasuraman, P. & Jayachandran, T. Differential regulation of pro- and antiapoptotic proteins in fish adipocytes during hypoxic conditions. Fish Physiol Biochem 42, 919–934 (2016). https://doi.org/10.1007/s10695-015-0185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0185-z

Keywords

Navigation