Skip to main content

Advertisement

Log in

Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Incorporation of a plant blend in the diet can affect growth parameters and metabolism in carnivorous fish. We studied for the first time the long-term (1 year) metabolic response of rainbow trout fed from first feeding with a plant-based diet totally devoid of marine ingredients. Hepatic enzymes were analyzed at enzymatic and molecular levels, at 3, 8 and 24 h after the last meal to study both the short-term effects of the last meal and long-term effects of the diet. The results were compared with those of fish fed a control diet of fish meal and fish oil. Growth, feed intake, feed efficiency and protein retention were lower in the group fed the plant-based diet. Glucokinase and pyruvate kinase activity were lower in the livers of trout fed the plant-based diet which the proportion of starch was lower than in the control diet. Glutamate dehydrogenase was induced by the plant-based diet, suggesting an imbalance of amino acids and a possible link with the lower protein retention observed. Gene expression of delta 6 desaturase was higher in fish fed the plant-based diet, probably linked to a high dietary level of linolenic acid and the absence of long-chain polyunsaturated fatty acids in vegetable oils. Hydroxymethylglutaryl-CoA synthase expression was also induced by plant-based diet because of the low rate of cholesterol in the diet. Changes in regulation mechanisms already identified through short-term nutritional experiments (<12 weeks) suggest that metabolic responses are implemented at short term and remain in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

M diet:

Marine resources-based diet

PB diet:

Plant-based diet

GK:

Glucokinase

PK:

Pyruvate kinase

G6Pase:

Glucose 6 phosphatase

GDH:

Glutamate dehydrogenase

ASAT:

Aspartate aminotransferase

ALAT:

Alanine aminotransferase

CS:

Citrate synthase

FAS:

Fatty acid synthase

HOAD:

3-Hydroxyacyl-CoA dehydrogenase

D6D:

Delta6desaturase

HMGCS:

Hydroxymethylglutaryl-CoA synthase

References

  • Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58. doi:10.1016/j.aquaculture.2010.03.012

    Article  CAS  Google Scholar 

  • Alegre M, Ciudad CJ, Fillat C, Guinovart JJ (1988) Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 173:185–189. doi:10.1016/0003-2697(88)90176-5

    Article  CAS  PubMed  Google Scholar 

  • Alvarez MJ, Díez A, López-Bote C et al (2000) Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br J Nutr 84:619–628

    CAS  PubMed  Google Scholar 

  • Borrebaek B, Waagbø R, Christophersen B et al (1993) Adaptable hexokinase with low affinity for glucose in the liver of atlantic salmon (Salmo salar). Comp Biochem Physiol Part B Comp Biochem 106:833–836. doi:10.1016/0305-0491(93)90038-7

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Capilla E, Médale F, Navarro I et al (2003) Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul Pept 110:123–132

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty K, Leveille GA (1969) Acetyl CoA carboxylase and fatty acid synthetase activities in liver and adipose tissue of meal-fed rats. Exp Biol Med 131:1051–1054

    Article  CAS  Google Scholar 

  • Chang HC, Seidman I, Teebor G, Lane MD (1967) Liver acetyl CoA carboxylase and fatty acid synthetase: relative activities in the normal state and in hereditary obesity. Biochem Biophys Res Commun 28:682–686

    Article  CAS  PubMed  Google Scholar 

  • Davies SJ, Morris PC, Baker RTM (1997) Partial substitution of fish meal and full-fat soya bean meal with wheat gluten and influence of lysine supplementation in diets for rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 28:317–328. doi:10.1046/j.1365-2109.1997.t01-1-00861.x

    Article  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organisation (2012) The state of world fisheries and aquaculture. http://www.fao.org/docrep/016/i2727e/i2727e00.htm

  • Francis G, Makkar HP, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227. doi:10.1016/S0044-8486(01)00526-9

    Article  CAS  Google Scholar 

  • Geay F, Ferraresso S, Zambonino-Infante JL et al (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genom 12:522. doi:10.1186/1471-2164-12-522

    Article  CAS  Google Scholar 

  • Geurden I, Cuvier A, Gondouin E et al (2005) Rainbow trout can discriminate between feeds with different oil sources. Physiol Behav 85:107–114. doi:10.1016/j.physbeh.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Kirchner S et al (2003) Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture 220:749–767. doi:10.1016/S0044-8486(02)00654-3

    Article  Google Scholar 

  • Kaushik SJ, Cravedi JP, Lalles JP et al (1995) Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133:257–274. doi:10.1016/0044-8486(94)00403-B

    Article  CAS  Google Scholar 

  • Kirchner S, Kaushik S, Panserat S (2003) Low protein intake is associated with reduced hepatic gluconeogenic enzyme expression in rainbow trout (Oncorhynchus mykiss). J Nutr 133:2561–2564

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Jiang LL, Hashimoto T (1996) Two mitochondrial 3-hydroxyacyl-CoA dehydrogenases in bovine liver. J Biochem (Tokyo) 119:775–782

    Article  CAS  Google Scholar 

  • Kolditz C, Borthaire M, Richard N et al (2008) Liver and muscle metabolic changes induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). AJP Regul Integr Comp Physiol 294:R1154–R1164. doi:10.1152/ajpregu.00766.2007

    Article  CAS  Google Scholar 

  • Krogdahl Å, Lea TB, Olli JJ (1994) Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Physiol 107:215–219. doi:10.1016/0300-9629(94)90296-8

    Article  Google Scholar 

  • Le Boucher R, Quillet E, Vandeputte M et al (2011) Plant-based diet in rainbow trout (Oncorhynchus mykiss Walbaum): are there genotype-diet interactions for main production traits when fish are fed marine versus plant-based diets from the first meal? Aquaculture 321(1–2):41–48. doi:10.1016/j.aquaculture.2011.08.010

    Article  Google Scholar 

  • Le Boucher R, Dupont-Nivet M, Vandeputte M et al (2012a) Selection for adaptation to dietary shifts: towards sustainable breeding of carnivorous fish. PLoS ONE 7:e44898. doi:10.1371/journal.pone.0044898

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Boucher R, Vandeputte M, Dupont-Nivet M et al (2012b) Genotype by diet interactions in European sea bass (Dicentrarchus labrax L.): nutritional challenge with totally plant-based diets. J Anim Sci 91:44–56. doi:10.2527/jas.2012-5311

    Article  PubMed  Google Scholar 

  • Lund I, Dalsgaard J, Rasmussen HT et al (2011) Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture 321:259–266. doi:10.1016/j.aquaculture.2011.09.028

    Article  CAS  Google Scholar 

  • Martin SAM, Vilhelmsson O, Médale F et al (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochim Biophys Acta BBA Proteins Proteomics 1651:17–29. doi:10.1016/S1570-9639(03)00231-0

    Article  CAS  PubMed  Google Scholar 

  • Metón I, Caseras A, Fernández F, Baanante IV (2004) Molecular cloning of hepatic glucose-6-phosphatase catalytic subunit from gilthead sea bream (Sparus aurata): response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp Biochem Physiol B: Biochem Mol Biol 138:145–153. doi:10.1016/j.cbpc.2004.03.004

    Article  Google Scholar 

  • Montero D, Mathlouthi F, Tort L et al (2010) Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish Shellfish Immunol 29:1073–1081. doi:10.1016/j.fsi.2010.08.024

    Article  CAS  PubMed  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B: Biochem Mol Biol 129:243–249

    Article  CAS  Google Scholar 

  • Moyano F, Cardenete G, De la Higuera M (1991) Nutritive and metabolic utilization of proteins with high glutamic acid content by the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Physiol 100:759–762. doi:10.1016/0300-9629(91)90404-Z

    Article  Google Scholar 

  • National Research Council (U. S.) (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington

    Google Scholar 

  • Panserat S, Médale F, Blin C et al (2000a) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170

    CAS  PubMed  Google Scholar 

  • Panserat S, Médale F, Brèque J et al (2000b) Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr Biochem 11:22–29

    Article  CAS  PubMed  Google Scholar 

  • Panserat S, Plagnes-Juan E, Kaushik S (2001) Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204:2351–2360

    CAS  PubMed  Google Scholar 

  • Panserat S, Kolditz C, Richard N et al (2008) Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. Br J Nutr 100:953. doi:10.1017/S0007114508981411

    Article  PubMed  Google Scholar 

  • Panserat S, Hortopan GA, Plagnes-Juan E et al (2009) Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture 294:123–131. doi:10.1016/j.aquaculture.2009.05.013

    Article  CAS  Google Scholar 

  • Pérez-Jiménez A, Cardenete G, Hidalgo MC et al (2012) Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiol Biochem 38:1145–1157. doi:10.1007/s10695-011-9600-2

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909. doi:10.1146/annurev.ph.54.030192.004321

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol 182:1015–1045. doi:10.1007/s00360-012-0658-7

    Article  CAS  Google Scholar 

  • Řehulka J, Minařík B (2012) Cholesterolaemia and triacylglycerolaemia in farmed rainbow trout, Oncorhynchus mykiss. Aquac Res 43:1651–1659. doi:10.1111/j.1365-2109.2011.02971.x

    Article  Google Scholar 

  • Richard N, Kaushik S, Larroquet L et al (2007) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96:299. doi:10.1079/BJN20061821

    Article  Google Scholar 

  • Seiliez I, Panserat S, Kaushik S, Bergot P (2001) Cloning, tissue distribution and nutritional regulation of a Δ6-desaturase-like enzyme in rainbow trout. Comp Biochem Physiol B: Biochem Mol Biol 130:83–93. doi:10.1016/S1096-4959(01)00410-9

    Article  CAS  Google Scholar 

  • Singer TD, Mahadevappa VG, Ballantyne JS (1990) Aspects of the energy metabolism of lake sturgeon, Acipenser fulvescens, with special emphasis on lipid and ketone body metabolism. Can J Fish Aquat Sci 47:873–881. doi:10.1139/f90-100

    Article  CAS  Google Scholar 

  • Slawski H, Adem H, Tressel R-P et al (2011) Total fish meal replacement with rapeseed protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Int 20:443–453. doi:10.1007/s10499-011-9476-2

    Article  Google Scholar 

  • Soengas JL, Polakof S, Chen X et al (2006) Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am J Physiol Regul Integr Comp Physiol 291:R810–R821. doi:10.1152/ajpregu.00115.2006

    Article  CAS  PubMed  Google Scholar 

  • Stickney RR, Hardy RW, Koch K et al (1996) The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhynchus mykiss diets. J World Aquac Soc 27:57–63. doi:10.1111/j.1749-7345.1996.tb00594.x

    Article  Google Scholar 

  • Tacchi L, Secombes CJ, Bickerdike R et al (2012) Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genom 13:363. doi:10.1186/1471-2164-13-363

    Article  CAS  Google Scholar 

  • Thanuthong T, Francis DS, Manickam E et al (2011a) Fish oil replacement in rainbow trout diets and total dietary PUFA content: II Effects on fatty acid metabolism and in vivo fatty acid bioconversion. Aquaculture 322–323:99–108. doi:10.1016/j.aquaculture.2011.09.026

    Article  Google Scholar 

  • Thanuthong T, Francis DS, Senadheera SD et al (2011b) Fish oil replacement in rainbow trout diets and total dietary PUFA content: I Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture 320:82–90. doi:10.1016/j.aquaculture.2011.08.007

    Article  CAS  Google Scholar 

  • The R Project for Statistical Computing (2013) http://www.r-project.org/. Accessed 3 Dec 2013

  • Torstensen BE, Espe M, Sanden M et al (2008) Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285:193–200. doi:10.1016/j.aquaculture.2008.08.025

    Article  CAS  Google Scholar 

  • Turchini GM, Francis DS (2009) Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. Br J Nutr 102:69. doi:10.1017/S0007114508137874

    Article  CAS  PubMed  Google Scholar 

  • Vagner M, Santigosa E (2011) Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315:131–143. doi:10.1016/j.aquaculture.2010.11.031

    Article  CAS  Google Scholar 

  • Vilhelmsson OT, Martin SAM, Médale F et al (2004) Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br J Nutr 92:71. doi:10.1079/BJN20041176

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Øverland M, Shearer KD et al (2012) Optimizing plant protein combinations in fish meal-free diets for rainbow trout (Oncorhynchus mykiss) by a mixture model. Aquaculture 360–361:25–36. doi:10.1016/j.aquaculture.2012.07.003

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thierry Kerneis who managed the trial at the PEIMA experimental fish farm, Frederic Terrier and Frank Sandres for the preparation of the two experimental diets in Donzacq INRA experimental facilities, and Alexandre Herman for plasma analysis.

Funding

This research was funded by the FUI (Fond Unique Interministériel) Vege-Aqua (2009–2012) and by the European Commission (European project FP7-KBBE-2001 N°288925 ARRAINA for Advanced Research Initiatives for Nutrition and Aquaculture).

Author contributions

The contributions of the authors to the study were as follow: R.L.B., M.D.N., E.Q. and F.M. conceived and designed the experiments. L.L. supervised the in vivo trial. F.M., R.L.B. and L.L. designed and performed samplings. V.V. and R.L.B. performed all the analysis. V.V. and RLB. analyzed the data. V.V., S.P. and F.M. wrote the paper. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Véron.

Ethics declarations

Competing interests

No competing interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Véron, V., Panserat, S., Le Boucher, R. et al. Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver. Fish Physiol Biochem 42, 771–785 (2016). https://doi.org/10.1007/s10695-015-0174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0174-2

Keywords

Navigation