Skip to main content
Log in

Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B2M:

β-2-Microglobulin

BACT:

β-Actin

BHT:

Butylated hydroxytoluene

cDNA:

Complementary DNA

CL:

Cardiolipin

COX:

Cytochrome c oxidase complex

DHA:

Docosahexaenoic acid

ETC:

Electron transport chain

FA:

Fatty acid

FAME:

Fatty acid methyl esters

HP-TLC:

High-performance thin-layer chromatography

LA:

Linoleic acid

LC-PUFA:

Long-chain polyunsaturated fatty acid

MIM:

Mitochondrial inner membrane

mtDNA:

Mitochondrial DNA

MUFA:

Monounsaturated fatty acids

NAC:

No-amplification control

ND:

NADH-coenzyme Q oxidoreductase complex

NTC:

No-template control

OA:

Oleic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PIn:

Peroxidation index

PL:

Phospholipid

PS:

Phosphatidylserine

PUFA:

Polyunsaturated fatty acid

qPCR:

Quantitative PCR

RO:

Rapeseed oil

ROS:

Reactive oxygen species

SFA:

Saturated fatty acids

SM:

Sphingomyelin

RT-PCR:

Real-time PCR

SEM:

Standard error of the mean

SGR:

Specific growth rate

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TLC:

Thin-layer chromatography

Tm:

Melting temperature

References

  • Abbott SK, Else PL, Hulbert AJ (2010) Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n-3 and n-6 PUFA. Br J Nutr 103:522–529

    Article  CAS  PubMed  Google Scholar 

  • Almaida-Pagán PF, de Costa J, Mendiola P, Tocher DR (2012) Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain. Comp Biochem Physiol B 163:129–137

    Article  PubMed  Google Scholar 

  • Almaida-Pagán PF, Lucas-Sánchez A, Tocher DR (2014) Changes in mitochondrial membrane composition and oxidative status during rapid growth, maturation and aging in zebrafish, Danio rerio. BBA Mol Cell Biol LipidS 1841:1003–1011

    Article  Google Scholar 

  • Almaida-Pagán PF, De Santis C, Rubio-Mejía OL, Tocher DR (2015) Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages. J Comp Physiol B 185:73–86

    Article  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2013) updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barzanti V, Battino M, Baracca A, Cavazzoni M, Cocchi M, Noble R, Maranesi M, Turchetto E, Lenaz G (1994) The effect of dietary-lipid changes on the fatty-acid composition and function of liver, heart and brain mitochondria in the rat at different ages. Br J Nutr 71:193–202

    Article  CAS  PubMed  Google Scholar 

  • Bell JG, Henderson RJ, Tocher DR, Sargent JR (2004) Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 39:223–232

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J (2010) Gene expression survey of mitochondrial uncoupling proteins (UCP1/UCP3) in gilthead sea bream (Sparus aurata L.). J Comp Physiol B 180:685–694

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J (2015) Unraveling the molecular signatures of oxidative phosphorylation to cope with the nutritionally changing metabolic capabilities of liver and muscle tissues in farmed fish. PLoS One 10:e0122889

    Article  PubMed Central  PubMed  Google Scholar 

  • Burk RF, Trumble MJ, Lawrence RA (1980) Rat hepatic cytosolic GSH-dependent enzyme protection against lipid peroxidation in the NADPH microsomal lipid peroxidation system. Biochim Biophys Acta 618:35–41

    Article  CAS  PubMed  Google Scholar 

  • Carrie I, Clement M, De Javel D, Frances H, Bourre JM (2000) Specific phospholipid fatty acid composition of brain regions in mice: effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res 41:465–472

    CAS  PubMed  Google Scholar 

  • Cha MC, Jones PJH (2000) Energy restriction dilutes the changes related to dietary fat type in membrane phospholipid fatty acid composition in rats. Metabolism 49:977–983

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids. Oily Press, Somerset 2003

    Google Scholar 

  • Clandinin MT, Field CJ, Hargraves K, Morson L, Zsigmond E (1985) Role of diet fat in subcellular structure and function. Can J Physiol Pharmacol 63:556

    Article  Google Scholar 

  • Cutler RG, Mattson MP (2001) Sphingomyelin and ceramide as regulators of development and lifespan. Mech Ageing Dev 122:895–908

    Article  CAS  PubMed  Google Scholar 

  • Enyu Y-L, Shu-Chien AC (2011) Proteomics analysis of mitochondrial extract from liver of female zebrafish undergoing starvation and refeeding. Aquacult Nutr 17:e413–e423

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Guderley H, Kraffe E, Bureau W (2008) Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J Comp Physiol B 178:385–399

    Article  CAS  PubMed  Google Scholar 

  • Hannum YA, Obeid LM (1994) Ceramide and the eukaryotic stress response. Biochem Soc Trans 25:1171–1175

    Article  Google Scholar 

  • Hansford RG, Castro F (1982) Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content in muscles of the rat. Mech Ageing Dev 19:191–201

    Article  CAS  PubMed  Google Scholar 

  • Henderson RJ, Tocher DR (1992) Thin-layer chromatography. In: Hamilton RJ, Hamilton S (eds) Lipid analysis. A practical approach. IRL Press, Oxford, pp 65–111

    Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2005) On the importance of fatty acid composition of membranes for aging. J Theor Biol 234:277–288

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2007) Membrane fatty acids as pacemaker of animal metabolism. Lipids 42:811–819

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2008) The links between membrane composition, metabolic rate and lifespan. Comp Biochem Physiol Part A 150:196–203

    Article  CAS  Google Scholar 

  • Hulbert AJ, Turner N, Storlien LH, Else PL (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol Rev 80:155–169

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  PubMed  Google Scholar 

  • Jaya-Ram A, Kuah M, Lim P, Kolkovski S, Shu-Chien AC (2008) Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture 277:275–281

    Article  CAS  Google Scholar 

  • Kjaer MA, Todorcevic M, Torstensen B, Vegusdal A, Ruyter B (2008) Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids 43:813–827

    Article  CAS  PubMed  Google Scholar 

  • Lee M-K, Kim I-H, Kim Y (2013) Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C2C12 muscle cells. Nutrients 5:1660–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemieux H, Blier PU, Tardif JC (2008) Does membrane fatty acid composition modulate mitochondrial functions and their thermal sensitivity? Comp Biochem Physiol Part A 149:20–29

    Article  CAS  Google Scholar 

  • Ljubibic V, Joseph A-M, Saleem A, Uguccioni G, Collu-Marchese M, Lai RYJ, Nguyen LM, Hood DA (2010) Transcriptional and post-transcriptional regulation of mitocondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim BiophysActa Gen Subj 1800:223–234

    Article  Google Scholar 

  • Lucas-Sánchez A, Almaida-Pagán PF, Tocher DR, Mendiola P, de Costa J (2013) Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol Biol Sci 69:142–151

    Google Scholar 

  • Manoli I, Alesci S, Blackman MR, Sun YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  CAS  PubMed  Google Scholar 

  • Marklund S (1980) Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol Scand Suppl 492:19–23

    CAS  PubMed  Google Scholar 

  • Martin N, Bureau DP, Marty Y, Kraffe E, Guderley H (2013) Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J Comp Physiol B 183:393–408

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington DC

    Google Scholar 

  • Naudi A, Jové M, Ayala V, Portero-Ortín M, Barja G, Pamplona R (2013) Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 4:1–13

    Article  Google Scholar 

  • Olsen RE, Henderson RJ (1989) The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry. J Exp Mar Biol Ecol 129:189–197

    Article  CAS  Google Scholar 

  • Ostbye TK, Kjaer MA, Rorá AMB, Torstensen B, Ruyter B (2011) High n-3 HUFA levels in the diet of Atlantic salmon affect muscle and mitochondrial membrane lipids and their susceptibility to oxidative stress. Aquac Nutr 17:177–190

    Article  CAS  Google Scholar 

  • Pamplona R (2011) Advanced lipoxidation end-products. Chem Biol Interact 192:14–20

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span—A homeoviscous-longevity adaptation? Ann NY Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  • Panchenko LF, Brusov OS, Gerasimov M, Loktaeva TD (1975) Intramitochondrial localization and release of rat liver superoxide dismutase. FEBS Lett 55:84–87

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58:447–457

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Sánchez J, Borrell M, Bermejo-Nogales A, Benedito-Palos L, Saera-Villa A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp Biochem Physiol D 8:123–130

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653

    Article  CAS  PubMed  Google Scholar 

  • Robin JH, Regost C, Kaushik SJ (2003) Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture 225:283–293

    Article  CAS  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Sign 8:582–599

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  PubMed  Google Scholar 

  • Schon EA, Naini A, Shanske S (2002) Identification of mutations in mitochondrial DNA from patients suffering mitochondrial disease. Methods Mol Biol 197:55–74

    CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Nat Acad Sci US 91:10771–10778

    Article  CAS  Google Scholar 

  • Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol. doi:10.1155/2010/737385

  • Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah PV, Subramanian VS, Wang K (1999) Novel physiological function of sphingomyelin in plasma. J Biol Chem 274:36409–36414

    Article  CAS  PubMed  Google Scholar 

  • Tocher DR, Agaba M, Hastings N, Bell JG, Dick JR, Teale AJ (2002) Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus). Fish Physiol Biochem 24:309–320

    Article  Google Scholar 

  • Tocher DR, Mourente G, Van der Eecken A, Evjemo JO, Díaz E, Wille M, Bell JG, Olsen Y (2003) Comparative study of antioxidant defence mechanisms in marine fish fed variable levels of oxidised oil and vitamin E. Aquac Int 11:195–216

    Article  CAS  Google Scholar 

  • Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Int Med 263:167–178

    Article  CAS  Google Scholar 

  • Ulmann L, Mimouni V, Roux S, Porsolt R, Poisson JP (2001) Brain and hippocampus fatty acid composition in phospholipid classes of aged-relative cognitive deficit rats. Prostaglandins Leukot EES 64:189–195

    Article  CAS  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 p new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  Google Scholar 

  • Ushio H, Muramatsu M, Ohshima T, Koizumi C (1997) Fatty acid compositions of biological membranes from fast skeletal muscle of carp. Fish Sci 62:427–434

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. doi:10.1186/gb-2002-3-7-research0034

    PubMed Central  PubMed  Google Scholar 

  • Voos W (2013) Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta Mol Cell Res 1883:388–399

    Article  Google Scholar 

  • Wiseman H (1996) Dietary influences on membrane function: importance in protection against oxidative damage and disease. J Nutr Biochem 7:2–15

    Article  CAS  Google Scholar 

  • Witting LA, Horwitt MK (1964) Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr 82:19–33

    CAS  PubMed  Google Scholar 

  • Zimmiak P (2011) Relationship of electrophilic stress to aging. Free Radic Biol Med 51:1087–1105

    Article  Google Scholar 

Download references

Acknowledgments

This research and P.F.A.-P. were funded by a Marie Curie Intra-European Fellowship within the 7th Community Framework Programme (PIEF-GA-2011-297964, OLDMITO). The authors report no conflicts of interest.

Ethical standard

The authors confirm that there is no potential conflict of interests. Fish were treated in accordance with British national ethical requirements and the experiments conducted under the UK Government Home Office project Licence number PPL 60/03969 in accordance with the amended Animals Scientific Procedures Act 1986 implementing EU directive 2010/63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Betancor.

Additional information

M. B. Betancor and P. F. Almaida-Pagán have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancor, M.B., Almaida-Pagán, P.F., Hernández, A. et al. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages. Fish Physiol Biochem 41, 1187–1204 (2015). https://doi.org/10.1007/s10695-015-0079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0079-0

Keywords

Navigation