Skip to main content
Log in

Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Brain cholinesterases from four fish (Arapaima gigas, Colossoma macropomum, Rachycentron canadum and Oreochromis niloticus) were characterized using specific substrates and selective inhibitors. Parameters of catalytic efficiency such as activation energy (AE), k cat and k cat/k m as well as rate enhancements produced by these enzymes were estimated by a method using crude extracts described here. Despite the BChE-like activity, specific substrate kinetic analysis pointed to the existence of only acetylcholinesterase (AChE) in brain of the species studied. Selective inhibition suggests that C. macropomum brain AChE presents atypical activity regarding its behavior in the presence of selective inhibitors. AE data showed that the enzymes increased the rate of reactions up to 1012 in relation to the uncatalyzed reactions. Zymograms showed the presence of AChE isoforms with molecular weights ranging from 202 to 299 kDa. Values of k cat and k cat/k m were similar to those found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DH, Thompson RHS (1948) The selective inhibition of cholinesterases. Biochem J 42:170–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aldridge WN (1953) The differentiation of true and pseudo cholinesterase by organo-phosphorus compounds. Biochem J 53:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antwi LAK (1987) Fish head acetylcholinesterase activity after aerial application of temephos in two rivers in Burkina Faso, West Africa. Bull Environ Contam Toxicol 38:461–466

    Article  CAS  PubMed  Google Scholar 

  • Assis CRD, Castro PF, Amaral IPG, Maciel Carvalho EVM, Carvalho LB Jr, Bezerra RS (2010) Characterization of acetylcholinesterase from the brain of the Amazonian tambaqui (Colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Environ Toxicol Chem 29:2243–2248

    Article  CAS  PubMed  Google Scholar 

  • Assis CRD, Linhares AG, Oliveira VM, França RCP, Maciel Carvalho EVM, Bezerra RS, Carvalho LB Jr (2012) Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ 441:141–150

    Article  CAS  PubMed  Google Scholar 

  • Augustinsson KB (1971) Comparative aspects of the purification and properties of cholinesterases. Bull World Health Organ 44:81–89

    CAS  PubMed  Google Scholar 

  • Austin L, Berry WK (1953) Two selective inhibitors of cholinesterase. Biochem J 54:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayliss BJ, Todrick A (1956) The use of a selective acetylcholinesterase inhibitor in the estimation of pseudocholinesterase activity in rat brain. Biochem J 62:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bezerra RF, Soares MCF, Maciel Carvalho EVM, Coelho LCBB (2013) Pirarucu, Arapaima gigas, the amazonian giant fish is briefly reviewed. Fish, fishing and fisheries series. Nova Science, New York, p 41. ISBN: 978-1-62948-137-1

  • Bigbee JW, Sharma KV, Gupta JJ, Dupree JL (1999) Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ Health Perspect 107:81–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brimijoin S (2005) Can cholinesterase inhibitors affect neural development? Environ Toxicol Pharmacol 19:429–432

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S, Koenigsberger C (1999) Cholinesterases in neural development: new findings and toxicologic implications. Environ Health Perspect 107:59–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan S, Chauhan S, D’Cruz R, Faruqi S, Singh KK, Varma S, Singh M, Karthik V (2008) Chemical warfare agents. Environ Toxicol Pharmacol 26:113–122

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Chuiko GM, Podgornaya VA, Zhelnin YY (2003) Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences. Comp Biochem Physiol B 135:55–61

    Article  CAS  PubMed  Google Scholar 

  • Çokugras AN (2003) Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 28:54–61

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A-FM (2006) Tilapia culture. CABI, Oxford

    Book  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science. A guide to enzyme catalysis and protein folding, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Forget J, Livet S, Leboulenger F (2002) Partial purification and characterization of acetylcholinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe). Comp Biochem Physiol C 132:85–92

    Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter M, Warshel A (1998) Origin of the catalytic power of acetylcholinesterase: computer simulation studies. J Am Chem Soc 120:183–194

    Article  CAS  Google Scholar 

  • Gnagey AL, Forte M, Rosenberry TL (1987) Isolation and characterization of acetylcholinesterase from Drosophila. J Biol Chem 262:13290–13298

    CAS  PubMed  Google Scholar 

  • Grigorieva GM (1973) Propionylcholinesterase in the nervous ganglia of the fresh-water pulmonate mollusc Lymnaea stagnalis. Comp Biochem Physiol A 44:1341–1352

    Article  Google Scholar 

  • Jung JH, Addison RF, Shim WJ (2007) Characterization of cholinesterases in marbled sole, Pleuronectes yokohamae, formerly Limanda yokohamae, and their inhibition in vitro by the fungicide iprobenfos. Mar Environ Res 63:471–478

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MI, Roots LA (1964) A “direct coloring” thiocholine method of cholinesterase. J Histochem Cytochem 12:219–221

    Article  CAS  PubMed  Google Scholar 

  • Kellar KJ (2006) Overcoming inhibitions. Proc Natl Acad Sci 103:13263–13264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL (1987a) Complete aminoacid sequence of human serum cholinesterase. J Biol Chem 262:549–557

    CAS  PubMed  Google Scholar 

  • Lockridge O, Adkins S, La Du BN (1987b) Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem 262:12945–12952

    CAS  PubMed  Google Scholar 

  • Lopez-Carrillo L, Lopez-Cervantes M (1993) Effect of exposure to organophosphate pesticides on serum cholinesterase levels. Arch Environ Health 48:359–363

    Article  Google Scholar 

  • Maciel Carvalho EVM, Bezerra RF, Assis CRD, Bezerra RS, Correia MTS, Coelho LCBB (2014) Physiological and biotechnological approaches of the amazonian tambaqui fish (Colossoma macropomum). Marine biology series. Nova Science, New York, p 50. ISBN: 978-1-63117-760-6

  • Massoulié J, Bonn S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5:57–106

    Article  PubMed  Google Scholar 

  • Miller BG, Wolfenden R (2002) Catalytic proficiency: the unusual case of OMP decarboxylase. Annu Rev Biochem 71:847–885

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MA, Abdel-Gawad AS, Ghazy AEM (2007) Purification and characterization of an acetylcholinesterase from the infective juveniles of Heterorhabditis bacteriophora. Comp Biochem Physiol C 146:314–324

    Google Scholar 

  • Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    Article  CAS  PubMed  Google Scholar 

  • Nolte HJ, Rosenberry TL, Neumann E (1980) Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry 19:3705–3711

    Article  CAS  PubMed  Google Scholar 

  • Payne JF, Mathieu A, Melvin W, Fancey LL (1996) Acetylcholinesterase, an old biomarker with a new future? field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32:225–231

    Article  CAS  Google Scholar 

  • Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 187:27–33

    Article  CAS  PubMed  Google Scholar 

  • Pezzementi L, Sanders M, Jenkins T, Holliman D, Toutant JP, Bradley RJ (1991) Structure and function of cholinesterase from amphioxus. In: Massoulié J, Bacou F, Barnard E, Chatonnet A, Doctor B, Quinn D (eds) Cholinesterases: structure, function, mechanism, genetics and cell biology. American Chemical Society, Washington, DC, pp 24–31

    Google Scholar 

  • Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  • Rodríguez-Fuentes G, Gold-Bouchot G (2000) Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons. Mar Environ Res 50:357–360

    Article  PubMed  Google Scholar 

  • Rodríguez-Fuentes G, Gold-Bouchot G (2004) Characterization of cholinesterase activity from different tissues of Nile tilapia (Oreochromis niloticus). Mar Environ Res 58:505–509

    Article  PubMed  Google Scholar 

  • Rodríguez-Fuentes G, Armstrong J, Schlenk D (2008) Characterization of muscle cholinesterases from two demersal flatfish collected near a municipal wastewater outfall in Southern California. Ecotoxicol Environ Saf 69:466–471

    Article  PubMed  Google Scholar 

  • Ross MC, Broomfield CA, Cerasoli DM, Doctor BP, Lenz DE, Maxwell DM, Saxena A (2008) Nerve agent bioscavenger: development of a new approach to protect against organophosphorus exposure. In: Lenhart MK (ed) Medical aspects of chemical warfare. US Army Medical Department Center and School, Houston, pp 243–258

    Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive and versatile assay for protein using coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  PubMed  Google Scholar 

  • Shaffer RV, Nakamura EL (1989) Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). NOAA tech. rep. NMFS 82, FAO fisheries synopsis, p 153

  • Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5:293–302

    Article  CAS  PubMed  Google Scholar 

  • Soreq H, Zakut H (1990) Cholinesterase genes: multileveled regulation. In: Sparkes RS (ed) Monographs in human genetics, vol 13. SW Karger, Basel, pp 1–102

    Google Scholar 

  • Sternfeld M, Ming GL, Song HJ, Sela K, Timberg R, Poo MM, Soreq H (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C-termini. J Neurosci 18:1240–1249

    CAS  PubMed  Google Scholar 

  • Sturm A, Silva de Assis HC, Hansen P (1999) Cholinesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar Environ Res 47:389–398

    Article  CAS  Google Scholar 

  • Talesa V, Contenti S, Mangiabene C, Pascolini R, Rosi G, Principato GB (1990) Propionylcholinesterase from Murex brandaris: comparison with other invertebrate cholinesterases. Comp Biochem Physiol C 96:39–43

    Article  Google Scholar 

  • Taylor P (1991) The cholinesterases. J Biol Chem 266:4025–4028

    CAS  PubMed  Google Scholar 

  • Tõugu V (2001) Acetylcholinesterase: mechanism of catalysis and inhibition. Curr Med Chem Cent Nerv Syst Agents 1:155–170

    Article  Google Scholar 

  • Varò I, Navarro JC, Amat F, Guilhermino L (2003) Effect of dichlorvos on cholinesterase activity of the European sea bass (Dicentrarchus labrax). Pestic Biochem Physiol 75:61–72

    Article  Google Scholar 

  • Varò I, Navarro JC, Nunes B, Guilhermino L (2007) Effects of dichlorvos aquaculture treatments on selected biomarkers of gilthead sea bream (Sparus aurata L.) fingerlings. Aquaculture 266:87–96

    Article  Google Scholar 

  • Wright MR (1968) Arrhenius parameters for the alkaline hydrolysis of esters in aqueous solution. Part II. Acetylcholine. J Chem Soc B:545–547. doi:10.1039/J29680000545

Download references

Acknowledgments

The authors would like to dedicate this study to Dr. Patrícia Fernandes de Castro (in memoriam) for her invaluable help and to thank Financiadora de Estudos e Projetos (FINEP/RECARCINE), Petróleo do Brasil S/A (PETROBRAS), Secretaria Especial de Aqüicultura e Pesca (SEAP/PR), Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq) and Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for financial support (Grant Numbers: IBPG-1301-2.08/08 FACEPE, IBPG-0523-2.08/11 FACEPE and BFP-0036-2.08/13 FACEPE). Our gratitude also goes to Universidade Federal Rural de Pernambuco and Aqualider, for providing fish juvenile specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Rodrigo Dias de Assis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Assis, C.R.D., Linhares, A.G., Oliveira, V.M. et al. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish. Fish Physiol Biochem 40, 1659–1668 (2014). https://doi.org/10.1007/s10695-014-9956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9956-1

Keywords

Navigation