Skip to main content
Log in

Quantitative Analysis of the Influence of Air Entrainment Restriction Degree on Burning Characteristics of Two Parallel Rectangular Pool Fires in Still Air

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Flame merging is deemed to enhance the burning intensity and make the fire more destructive. This paper presents an experimental study on merging behaviors of two same rectangular heptane pool fires with long sides parallel. The pan aspect ratio was set 2–4 and the spacing was changed. The burning rate and flame height were measured. As the spacing decreases, the flame shape was divided into five regions, i.e., (I) no interaction, (II) tilt but non-merging, (III) intermittent merging, (IV) upper flames fully merging but lower flames separated and (V) flames merging from the pan base. The results showed that both the burning rate and flame height increase within the stages I–IV and then decrease in stage V. A normalized parameter ψ is introduced to characterize the air entrainment restriction. A unified correlation between burning rate and ψ is then developed. Connecting with the theoretical force analysis, the criteria of merging from the base and beginning merging are determined as ψ = 0.33 and ψ = 0.61. Then a piecewise correlation of the merging flame height is established. The proposed correlations for burning rate and flame height are verified using present and literature data and their scope of application is further expanded into square pool fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

B :

Buoyancy force (N)

c :

Introduced parameter in Eq. (11)

H f :

Mean flame height above the pan surface (m)

ΔH c :

Heat of combustion (MJ/kg)

k :

Proportion coefficient in Eq. (15)

K :

Introduced parameter in Eq. (16)

L :

Pan length (m)

L′:

Pan length of the assumed single fire under S = 0 (m)

\(\dot{m}^{\prime \prime }\) :

Burning rate per unit area of each pan (g/(m2 s))

\(\dot{m}_{a,S = 0}\) :

Air entrainment mass of S = 0 (kg/s)

\(\dot{m}_{a,S > 0}\) :

Air entrainment mass of S > 0 (kg/s)

p :

Pressure (Pa)

P :

Pressure thrust (N)

\(\dot{Q}\) :

Heat release rate of each pan (kW)

\(\dot{Q}_{WL}^{*}\) :

Normalized heat release rate in Eq. (19)

\(\dot{Q}_{{W^{\prime}L^{\prime}}}^{*}\) :

Normalized heat release rate in Eq. (20)

S :

Pan edge spacing (m)

T :

Ambient temperature (K)

T f :

Flame temperature (K)

ΔT re :

Temperature rise in the restriction region (K)

u :

Horizontal gas inflow velocity (m/s)

\(\bar{U}_{\infty - f}^{{}}\) :

Velocity flow from ambient region to the flame zone (m/s)

\(U_{re - f}^{{}}\) :

Velocity flow from restriction region to the flame zone (m/s)

\(V_{\infty - re}^{{}}\) :

Velocity flow from ambient region to the restriction zone (m/s)

W :

Pan width (m)

W′:

Pan width of the assumed single fire under S = 0 (m)

α :

Entrainment constant

α S :

Characteristic entrainment constant for a given S

γ :

Constant in Eq. (19)

η :

Constant in Eq. (19)

θ :

Flame tilt angle (°)

ρ :

Density (kg/m3)

χ :

Combustion efficiency

ψ :

Normalized parameter in Eq. (1)

∞:

Ambient zone

f :

Flame zone

re :

Restriction zone

SF :

Single fire

References

  1. Casal J, Gómez-Mares M, Muñoz M, Palacios A (2012) Jet fires: a “minor” fire hazard. Chem Eng Trans 26:13–20. https://doi.org/10.3303/cet1226003

    Article  Google Scholar 

  2. Vasanth S, Tauseef SM, Abbasi T, Abbasi SA (2014) Multiple pool fires: occurrence, simulation, modeling and management. J Loss Prev Proc 29:103–121. https://doi.org/10.1016/j.jlp.2014.01.005

    Article  Google Scholar 

  3. Liu N, Liu Q, Lozano JS, Zhang L, Deng Z, Yao B, Zhu J, Satoh K (2013) Multiple fire interactions: a further investigation by burning rate data of square fire arrays. Proc Combust Inst 34(2):2555–2564. https://doi.org/10.1016/j.proci.2012.06.098

    Article  Google Scholar 

  4. Jiao Y, Gao W, Liu N, Lei J, Xie X, Zhang L, Tu R (2019) Interpretation on fire interaction mechanisms of multiple pool fires. Proc Combust Inst 37(3):3967–3974. https://doi.org/10.1016/j.proci.2018.06.049

    Article  Google Scholar 

  5. Sengupta A (2019) Optimal safe layout of fuel storage tanks exposed to pool fire: one dimensional deterministic modelling approach. Fire Technol 55:1771–1799. https://doi.org/10.1007/s10694-019-00830-y

    Article  Google Scholar 

  6. Huffman K, Welker J, Sliepcevich C (1969) Interaction effects of multiple pool fires. Fire Technol 5(3):225–232. https://doi.org/10.1007/bf02591520

    Article  Google Scholar 

  7. Liu N, Liu Q, Lozano JS, Shu L, Zhang L, Zhu J, Deng Z, Satoh K (2009) Global burning rate of square fire arrays: experimental correlation and interpretation. Proc Combust Inst 32(2):2519–2526. https://doi.org/10.1016/j.proci.2008.06.086

    Article  Google Scholar 

  8. Wan H, Gao Z, Ji J, Zhang Y, Li K, Wang L (2019) Effects of pool size and spacing on burning rate and flame height of two square heptane pool fires. J Hazard Mater 369:116–124. https://doi.org/10.1016/j.jhazmat.2019.01.111

    Article  Google Scholar 

  9. Tu R, Fang J, Zhang Y, Zhang J, Zeng Y (2013) Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proc Combust Inst 34(2):2591–2598. https://doi.org/10.1016/j.proci.2012.06.036

    Article  Google Scholar 

  10. Ji J, Tan T, Gao Z, Wan H, Zhu J, Ding L (2019) Numerical investigation on the influence of length–width ratio of fire source on the smoke movement and temperature distribution in tunnel fires. Fire Technol 55(3):963–979. https://doi.org/10.1007/s10694-018-00814-4

    Article  Google Scholar 

  11. Thomas P, Baldwin R, Heselden A (1965) Buoyant diffusion flames: some measurements of air entrainment, heat transfer, and flame merging. Symp Int Combust 10:983–996. https://doi.org/10.1016/s0082-0784(65)80241-7

    Article  Google Scholar 

  12. Sugawa O, Takahashi W (1993) Flame height behavior from multi-fire sources. Fire Mater 17(3):111–117. https://doi.org/10.1002/fam.810170303

    Article  Google Scholar 

  13. Wan H, Ji J, Li K, Huang X, Sun J, Zhang Y (2017) Effect of air entrainment on the height of buoyant turbulent diffusion flames for two fires in open space. Proc Combust Inst 36(2):3003–3010. https://doi.org/10.1016/j.proci.2016.07.078

    Article  Google Scholar 

  14. Liu N, Zhang S, Luo X, Lei J, Chen H, Xie X, Zhang L, Tu R (2019) Interaction of two parallel rectangular fires. Proc Combust Inst 37(3):3833–3841. https://doi.org/10.1016/j.proci.2018.06.158

    Article  Google Scholar 

  15. He P, Wang P, Wang K, Liu X, Wang C, Tao C, Liu Y (2019) The evolution of flame height and air flow for double rectangular pool fires. Fuel 237:486–493. https://doi.org/10.1016/j.fuel.2018.10.027

    Article  Google Scholar 

  16. Fan CG, Tang T (2017) Flame interaction and burning characteristics of abreast liquid fuel fires with cross wind. Exp Therm Fluid Sci 82:160–165. https://doi.org/10.1016/j.expthermflusci.2016.11.010

    Article  Google Scholar 

  17. Maynard T, Princevac M, Weise DR (2016) A study of the flow field surrounding interacting line fires. J Combust 2016:1–12. https://doi.org/10.1155/2016/6927482

    Article  Google Scholar 

  18. Croce P, Mudan K, Moorhouse J (1984) Thermal radiation from LNG trench fires—Volume I, Report # GRI, 84/0151.1, Gas Research Institute, Chicago

  19. Wheeler AJ, Ganji AR (1996) Introduction to engineering experimentation. Prentice Hall, Upper Saddle River

    Google Scholar 

  20. Zukoski E, Cetegen B, Kubota T (1985) Visible structure of buoyant diffusion flames. Symp Int Combust 20:361–366. https://doi.org/10.1016/s0082-0784(85)80522-1

    Article  Google Scholar 

  21. Yan WG, Wang CJ, Guo J (2011) One extended OTSU flame image recognition method using RGBL and stripe segmentation. Appl Mech Mater 121–126:2141–2145. https://doi.org/10.4028/www.scientific.net/amm.121-126.2141

    Article  Google Scholar 

  22. Ji J, Yuan X, Li K, Sun J (2015) Influence of the external wind on flame shapes of n-heptane pool fires in long passage connected to a shaft. Combust Flame 162(5):2098–2107. https://doi.org/10.1016/j.combustflame.2015.01.008

    Article  Google Scholar 

  23. Gao Z, Ji J, Wan H, Li K, Sun J (2015) An investigation of the detailed flame shape and flame length under the ceiling of a channel. Proc Combust Inst 35(3):2657–2664. https://doi.org/10.1016/j.proci.2014.06.078

    Article  Google Scholar 

  24. Fan C, Ji J, Li Y, Ingason H, Sun J (2017) Experimental study of sidewall effect on flame characteristics of heptane pool fires with different aspect ratios and orientations in a channel. Proc Combust Inst 36(2):3121–3129. https://doi.org/10.1016/j.proci.2016.06.196

    Article  Google Scholar 

  25. Wan H, Gao Z, Ji J, Sun J, Zhang Y, Li K (2018) Predicting heat fluxes received by horizontal targets from two buoyant turbulent diffusion flames of propane burning in still air. Combust Flame 190:260–269. https://doi.org/10.1016/j.combustflame.2017.12.003

    Article  Google Scholar 

  26. Ji J, Wan H, Gao Z, Fu Y, Sun J, Zhang Y, Li K, Hostikka S (2016) Experimental study on flame merging behaviors from two pool fires along the longitudinal centerline of model tunnel with natural ventilation. Combust Flame 173:307–318. https://doi.org/10.1016/j.combustflame.2016.08.020

    Article  Google Scholar 

  27. Hasemi Y, Nishihata M (1989) Fuel shape effect on the deterministic properties of turbulent diffusion flames. Fire Saf Sci 2:275–284. https://doi.org/10.3801/iafss.fss.2-275

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51722605 and 51906239), and Natural Science Foundation of Anhui Province (Grant No. 2008085QE251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Yu, L. & Ji, J. Quantitative Analysis of the Influence of Air Entrainment Restriction Degree on Burning Characteristics of Two Parallel Rectangular Pool Fires in Still Air. Fire Technol 57, 1149–1165 (2021). https://doi.org/10.1007/s10694-020-01043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-01043-4

Keywords

Navigation