Skip to main content
Log in

Experimental Studies on the Effects of Spacing on Upward Flame Spread over Thin PMMA

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Experiments were carried out to study the effect of spacing between wall and thin fuels on upward flame spread. The front flame height, back flame height, pyrolysis height, burnout length, and pyrolysis spread rate were measured by video image analysis with spacings of 2 mm, 7 mm, 13 mm, 19 mm, and 25 mm. Experiments were performed on uniform PMMA (polymethyl-methacrylate) samples with 200 mm height, 50 mm width, and 1 mm thickness. The results are as follows: (1) As the spacing increased, the front flame height, back flame height, pyrolysis height, and burnout length showed the same trajectory, first increased and then decreased. The maximum trajectory was observed at a spacing of 6.5% of the wall height. (2) At an infinite length of PMMA, the pyrolysis zone and pyrolysis spread rate would reach an asymptotic steady state, and the pyrolysis and burnout spread rates will be asymptotically equal. (3) Of particular interest is the maximum mass-loss rate for a wall spacing/sample height ratio (0.065) due to enhanced the radiation fluxes. In this study, the effects of spacing between wall and fuels on upward flame spread was investigated for the first time using 1 mm thick PMMA sheets, including two-face burning case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Dar UA, Zhang W (2015) Polymer based aerospace structures under high velocity impact applications; experimental, constitutive and finite element analysis. J Mech Sci Technol 29(10):4259–4265. doi:10.1007/s12206-015-0922-3

    Article  Google Scholar 

  2. Tamanini F, Moussa AN (1980) Experiments on the turbulent burning of vertical parallel walls. Combust Sci Technol 23(3–4):143–151. doi:10.1080/00102208008952405

    Article  Google Scholar 

  3. Wang HY, Joulain P, Most JM (1995) Three-dimensional modeling and parametric study of turbulent burning along the walls of a vertical rectangular channel. Combust Sci Technol 109(1–6):287–308. doi:10.1080/00102209508951906

    Article  Google Scholar 

  4. Wang HY, Joulain P (2000) Numerical study of the turbulent burning between vertical parallel walls with a fire-induced flow. Combust Sci Technol 154(1):119–161. doi:10.1080/00102200008947274

    Article  Google Scholar 

  5. Tsai KC (2007) Upward flame spread on a flat surface, in a corner and between two parallel surfaces. J Chin Soc Mech Eng 28(3):341–348

    Google Scholar 

  6. Rangwala AS, Buckley SG, Torero JL (2007) Upward flame spread on a vertically oriented fuel surface: the effect of finite width. Proc Combust Inst 31:2607–2615. doi:10.1016/j.proci.2006.07.235

    Article  Google Scholar 

  7. Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, New York

  8. Quintiere JG (2001) The effects of angular orientation on flame spread over thin materials. Fire Saf J 36(3):291–312. doi:10.1016/s0379-7112(00)00051-5

    Article  Google Scholar 

  9. Kleinhenz J, Ferkul P, Pettegrew R, Sacksteder KR, T’Ien JS (2005) One-sided flame spread phenomena of a thermally thin composite cotton/fiberglass fabric. Fire Mater 29(1):27–37. doi:10.1002/fam.870

    Article  Google Scholar 

  10. Ohlemiller T, Shields J (1993) One- and two-sided burning of thermally thin materials. Fire Mater 17:103–110

    Article  Google Scholar 

  11. Thomas PH, Webster CT (1960) Some experiments on the burning of fabrics and the heights of buoyant diffusion flames. Fire Research Note No 979

  12. Markstein GH, de Ris J (1973) Upward fire spread over textiles. Symp (Int) Combust 14(1):1085–1097

    Article  Google Scholar 

  13. Leventon IT, Stoliarov SI (2013) Evolution of flame to surface heat flux during upward flame spread on poly(methyl methacrylate). Proc Combust Inst 34:2523–2530. doi:10.1016/j.proci.2012.06.051

    Article  Google Scholar 

  14. Pizzo Y, Consalvi JL, Querre P, Coutin M, Audouin L, Porterie B, Torero JL (2008) Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combust Flame 152(3):451–460. doi:10.1016/j.combustflame.2007.06.020

    Article  MATH  Google Scholar 

  15. Gollner MJ, Williams FA, Rangwala AS (2011) Upward flame spread over corrugated cardboard. Combust Flame 158(7):1404–1412. doi:10.1016/j.combustflame.2010.12.005

    Article  Google Scholar 

  16. An WG, Huang XJ, Wang QS, Zhang Y, Sun JH, Liew KM, Wang H, Xiao HH (2015) Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments. J Thermoplast Compos Mater 28(1):111–127. doi:10.1177/0892705713486132

    Article  Google Scholar 

  17. An WG, Wang Z, Xiao HH, Sun JH, Liew KM (2014) Thermal and fire risk analysis of typical insulation material in a high elevation area: Influence of sidewalls, dimension and pressure. Energy Convers Manag 88:516–524. doi:10.1016/j.enconman.2014.08.026

    Article  Google Scholar 

  18. Miller CH, Gollner MJ (2015) Upward flame spread over discrete fuels. Fire Saf J 77:36–45. doi:10.1016/j.firesaf.2015.07.003

    Article  Google Scholar 

  19. Xie QY, Zhang HP, Ye RB (2009) Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough. J Hazard Mater 166(2–3):1321–1325. doi:10.1016/j.jhazmat.2008.12.057

    Article  Google Scholar 

  20. Qian C, Ishida H, Saito K (1994) Upward flame spread along PMMA vertical corner walls Pert II: mechanism of: “M” shape pyrolysis front formation. Combust Flame 99:331–338

    Article  Google Scholar 

  21. Urbas J, Parker WJ, Luebbers GE (2004) Surface temperature measurements on burning materials using an infrared pyrometer: accounting for emissivity and reflection of external radiation. Fire Mater 28(1):33–53. doi:10.1002/fam.844

    Article  Google Scholar 

  22. Melendez J, Foronda A, Aranda JM, Lopez F, Lopez del Cerro FJ (2010) Infrared thermography of solid surfaces in a fire. Meas Sci Technol 21(10). doi:10.1088/0957-0233/21/10/105504

    Article  Google Scholar 

  23. Kim W, Sivathanu Y, Gore JP (2001) Characterization of spectral radiation intensities from standard test fires for fire detection. NIST Spec Publ SP, pp 91–106

  24. Parent G, Acem Z, Collin A, Berfroi R, Boulet P, Pizzo Y, Mindykowski P, Kaiss A, Porterie B (2012) Radiative flux emitted by a burning PMMA slab. In: 6th European thermal sciences conference (Eurotherm), poitiers, France, 2012 Sep 04-07 2012. J Phys Conf Ser. doi:10.1088/1742-6596/395/1/012153

  25. Sohn Y, Baek SW, Kashiwagl T (1999) Transient modeling of thermal degradation in non-charring solids. Combust Sci Technol 145(1–6):83–108. doi:10.1080/00102209908924204

    Article  Google Scholar 

  26. DiNenno PJ (2008) The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Massachusetts

    Google Scholar 

  27. Audouin L, Kolb G, Torero JL, Most JM (1995) Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings. Fire Saf J 24(2):167–187

    Article  Google Scholar 

  28. Fan Y, Suzuki Y, Kasagi N (2009) Experimental study of micro-scale premixed flame in quartz channels. Proc Combust Inst 32:3083–3090. doi:10.1016/j.proci.2008.06.219

    Article  Google Scholar 

  29. Gollner MJ, Huang X, Cobian J, Rangwala AS, Williams FA (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538. doi:10.1016/j.proci.2012.06.063

    Article  Google Scholar 

  30. Gollner MJ, Xie YX, Lee M, Nakamura Y, Rangwala AS (2012) Burning behavior of vertical matchstick arrays. Combust Sci Technol 184(5):585–607. doi:10.1080/00102202.2011.652787

    Article  Google Scholar 

  31. Pizzo Y, Consalvi JL, Querre P, Coutin M, Porterie B (2009) Width effects on the early stage of upward flame spread over PMMA slabs: experimental observations. Fire Saf J 44(3):407–414. doi:10.1016/j.firesaf.2008.09.003

    Article  Google Scholar 

  32. Arakawa A, Saito K, Gruver WA (1993) Automated infrared imaging temperature measurement with application to upward flame spread studies. Part I. Combust Flame 92(3):222–230

    Article  Google Scholar 

  33. Grant G, Drysdale D (1995) Numerical modelling of early flame spread in warehouse fires. Fire Saf J 24(3):247–278

    Article  Google Scholar 

  34. Tseng Y-T, T’ien JS (2010) Limiting length, steady spread, and nongrowing flames in concurrent flow over solids. J Heat Transf 132(9):091201. doi:10.1115/1.4001645

    Article  Google Scholar 

  35. Quintiere JG (1998) Principles of fire behavior. Delmar Publishers, New York

    Google Scholar 

  36. Quintiere JG, Harkleroad M, Hasemi Y (1986) Wall flames and implications for upward flame spread. Combust Sci Technol 48(3–4):191–222

    Article  Google Scholar 

  37. Wang Y, Zhang F, Chen XL, Jin Y, Zhang J (2010) Burning and dripping behaviors of polymers under the UL94 vertical burning test conditions. Fire Mater 34(4):203–215. doi:10.1002/fam.1021

    Google Scholar 

  38. Tewarson A, Tamaini F (1976) Research and development for a laboratory-scale flammability test method for cellular plastics. Factory Mutual Research,

  39. Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill, New York

Download references

Acknowledgments

The work was supported by Jiangsu Provincial Natural Science Foundation of China (Project No. BK20131117) and Chinese Scholarship Council (Grant No. 201306420001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhu, G., Gao, Y. et al. Experimental Studies on the Effects of Spacing on Upward Flame Spread over Thin PMMA. Fire Technol 53, 673–693 (2017). https://doi.org/10.1007/s10694-016-0590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-016-0590-6

Keywords

Navigation