Skip to main content
Log in

Banking Regulation and Collateral Screening in a Model of Information Asymmetry

  • Published:
Journal of Financial Services Research Aims and scope Submit manuscript

Abstract

This paper explores the impact of banking regulation on a competitive credit market with ex-ante asymmetric information and aggregate uncertainty. I construct a model where the government imposes a regulatory constraint that limits the losses banks make in the event of their default. I show that the addition of banking regulation results in three deviations from the standard theory. First, collateral is demanded of both high and low risk firms, even in the absence of asymmetric information. Second, if banking regulation is sufficiently strict, there may not exist an adverse selection problem. Third, a pooling Nash equilibrium can exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A pooling contract with positive collateral would also not exist in a standard adverse selection model as collateral is costly and there would exist a profitable deviation from this contract to a pooling contract with zero collateral.

  2. There are some theoretical benefits to the approach taken by Liu et al. (2009); in particular the assumption of constant returns to scale allows them to generate a theoretical result linking the weighted average of the stock return and the after-tax corporate bond return which can be empirically tested. I am grateful to an anonymous referee for drawing this to my attention.

  3. I do not wish to emphasize the implications of the model on interest rates as these are predominantly driven by the assumption of perfect competition in the banking sector. For the model to say something meaningful on interest rates it would be necessary to relax this assumption of perfect competition along the lines of Villas-Boas and Schmidt-Mohr (1999) and Hainz et al. (2012) who combine an adverse selection model with a spatial model of oligopolistic competition.

  4. For an overview of how collateral requirements contribute to the calculation of risk-weighted assets in the Basel II framework see De Lisa et al. (2012).

References

  • Acharya VV, Berger AN, Roman RA (2018) Lending implications of U.S. bank stress tests: Costs or benefits? J Financ Intermed 34(C):58–90

    Article  Google Scholar 

  • Berger AN, Udell GF (1990) Collateral, loan quality and bank risk. J Monet Econ 25(1):21–42

    Article  Google Scholar 

  • Berger AN, Scott Frame W, Ioannidou V (2011) Tests of ex ante versus ex post theories of collateral using private and public information. J Financ Econ 100(1):85–97

    Article  Google Scholar 

  • Besanko D, Thakor AV (1987) Collateral and rationing: sorting equilibria in monopolistic and competitive credit markets. Int Econ Rev 28(3):671–689

    Article  Google Scholar 

  • Bester H (1985a) Screening vs. rationing in credit markets with imperfect information. Am Econ Rev 75(4):850–855

    Google Scholar 

  • Bester H (1985b) The level of Investment in Credit Markets with imperfect information. Zeitschrift für die gesamte Staatswissenschaft / J Inst Theor Econ 141(4):503–515

    Google Scholar 

  • Clemenz G (1993) A note on the nonexistence of a rationing equilibrium in the Besanko-Thakor model. Int Econ Rev 34(3):727–737

    Article  Google Scholar 

  • Corrado CA, Hulten CR (2010) How do you measure a "technological revolution"? Am Econ Rev 100(2):99–104

    Article  Google Scholar 

  • Cortés K, Demyanyk Y, Li L, Loutskina E, Strahan PE (2018) Stress tests and small business lending. NBER Working Papers 24365. National Bureau of Economic Research. https://doi.org/10.3386/w24365

  • De Lisa R, Galliani C, Marchesi M, Vallascas F, Zedda S (2012) The mitigation role of collaterals and guarantees under Basel II. EUR 25529 EN. Publications Office of the European Union; 2012. JRC75391. https://doi.org/10.2788/50944

  • Demirgüç-Kunt A, Kane EJ, Laeven L (2008) Determinants of deposit-insurance adoption and design. J Financ Intermed 17(3):407–438

    Article  Google Scholar 

  • Demmou L, Stefanescu I, Arquie A (2019) Productivity growth and finance: the role of intangible assets - a sector level analysis. OECD Economics Department Working Papers, No. 1547, OECD Publishing. https://doi.org/10.1787/e26cae57-en

  • Dent K, Westwood B, Segoviano M (2016) Stress testing of banks: an introduction. Bank Engl Q Bull 56(3):130–143

    Google Scholar 

  • Diamond DW, Dybvig PH (1983) Bank runs, deposit insurance, and liquidity. J Polit Econ 91(3):401–419

    Article  Google Scholar 

  • Estrella A (2004) The cyclical behavior of optimal bank capital. J Bank Financ 28(6):1469–1498

    Article  Google Scholar 

  • Gao W, Kehrig M (2017) Returns to scale, Productivity and Competition: Empirical Evidence from U.S. Manufacturing and Construction Establishments. Working Paper

  • Gobbi G, Lotti F (2004) Entry decisions and adverse selection: an empirical analysis of local credit markets. J Financ Serv Res 26(3):225–244

    Article  Google Scholar 

  • Godlewski CJ, Weill L (2010) Does collateral help mitigate adverse selection? A cross-country analysis. J Financ Serv Res 40(1–2):49–78

    Google Scholar 

  • Hainz C, Weill L, Godlewski CJ (2012) Bank competition and collateral: theory and evidence. J Financ Serv Res 44(2):131–148

    Article  Google Scholar 

  • Jiménez G, Salas V, Saurina J (2006) Determinants of collateral. J Financ Econ 81(2):255–281

    Article  Google Scholar 

  • Lacker J (2001) Collateralized debt as the optimal contract. Rev Econ Dyn 4(4):842–859

    Article  Google Scholar 

  • Lehmann E, Neuberger D (2001) Do lending relationships matter?: evidence from bank survey data in Germany. J Econ Behav Organ 45(4):339–359

    Article  Google Scholar 

  • Liu LX, Whited TM, Zhang L (2009) Investment-based expected stock returns. J Polit Econ 117(6):1105–1139

    Article  Google Scholar 

  • Malherbe F, McMahon M (2020) Beyond Pangloss: financial sector origins of inefficient economic booms. CEPR discussion papers 15180, C.E.P.R. Discussion Papers

  • Mehran H, Thakor A (2011) Bank capital and value in the cross-section. Rev Financ Stud 24(4):1019–1067

    Article  Google Scholar 

  • Milde H, Riley JG (1988) Signaling in credit markets. Q J Econ 103(1):101–129

    Article  Google Scholar 

  • Niinimäki JP (2011) Nominal and true cost of loan collateral. J Bank Financ 35(10):2782–2790

    Article  Google Scholar 

  • Riley JG (1979) Informational Equilibrium. Econometrica 47(2):331–359

    Article  Google Scholar 

  • Rothschild M, Stiglitz JE (1976) Equilibrium in competitive insurance markets: an essay on the economics of imperfect information. Q J Econ 90(4):629–649

    Article  Google Scholar 

  • Stiglitz JE, Weiss A (1981) Credit rationing in markets with imperfect information. Am Econ Rev 71(3):393–410

    Google Scholar 

  • Uchida H (2011) What do banks evaluate when they screen borrowers? Soft information, hard information and collateral. J Financ Serv Res 40(1–2):29–48

    Article  Google Scholar 

  • Villas-Boas JM, Schmidt-Mohr U (1999) Oligopoly with asymmetric information: differentiation in credit markets. RAND J Econ 30(3):375–396

    Article  Google Scholar 

  • Wilson C (1977) A model of insurance markets with incomplete information. J Econ Theory 16(2):167–207

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the Editor, the co-Editor and an anonymous reviewer for their valuable comments and constructive suggestions. I am grateful to Stefano Lugo, Frederic Malherbe, Morten Ravn and Martin Summer for their insightful discussions. The views expressed in this paper are those of the author and do not necessarily reflect the position of the Bank of Lithuania or the Eurosystem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hemingway.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

In this proof it is assumed that W is sufficiently high that any quantity of collateral can be implemented in equilibrium. The Lagrangian that solves for the competitive equilibrium contract for an single firm type is

$$ {\displaystyle \begin{array}{c}{\mathcal{L}}_i={p}_i\left(\varphi {k}_i^{\alpha }-{R}_i{k}_i\right)-\left(1-{p}_i\right){C}_i+W\\ {}+q{\lambda}_B\left[{p}_i\left({z}_G\right){R}_i{k}_i+\delta \left(1-{p}_i\left({z}_G\right)\right){C}_i-{k}_i\right]\\ {}\begin{array}{c}+{\lambda}_S\left[{p}_i\left({z}_B\right){R}_i{k}_i+\delta \left(1-{p}_i\left({z}_B\right)\right){C}_i-\gamma {k}_i\right]\\ {}+{\lambda}_C^{-}{C}_i,\end{array}\end{array}} $$
(A.45)

where λS, λB and \( {\lambda}_C^{-} \) are the multipliers on Eqs. (7), (8) and the non-negativity constraint on collateral. The first order conditions are

$$ {p}_i={\lambda}_Bq{p}_i\left({z}_G\right)+{\lambda}_S{p}_i\left({z}_B\right), $$
(A.46)
$$ \left(1-{p}_i\right)={\lambda}_B q\delta \left(1-{p}_i\left({z}_G\right)\right)+{\lambda}_S\delta \left(1-{p}_i\left({z}_B\right)\right)+{\lambda}_C^{-}, $$
(A.47)
$$ {p}_i\left(\alpha \varphi {k}_i^{\alpha -1}-{R}_i\right)+{\lambda}_Bq\left[{p}_i\left({z}_G\right){R}_i-1\right]+{\lambda}_S\left[{p}_i\left({z}_B\right){R}_i-\gamma \right]=0. $$
(A.48)

First note that if the stress-test condition does not bind, λS = 0 and the contract terms that solve the first order conditions are given by Ci = 0, Ri = 1 and \( {k}_i={\left(\alpha {p}_i\left({z}_G\right)\right)}^{\frac{1}{1-\alpha }} \). Plugging these equations into Eq. (7), the regulatory constraint will be satisfied only if γ ≤ ξ. Next, consider when λB will be strictly positive. To do this, suppose instead that λB = 0, then Eq. (A.46) implies that \( {\lambda}_S=\frac{p_i}{p_i\left({z}_B\right)} \). Substituting this into Eq. (A.47) and rearranging yields

$$ \left(1-{p}_i\right)=\delta {p}_i\left(\frac{1-{p}_i\left({z}_B\right)}{p_i\left({z}_B\right)}\right)+{\lambda}_C^{-}. $$
(A.49)

This yields a contradiction whenever \( \delta >\left(\frac{p_i\left({z}_B\right)}{1-{p}_i\left({z}_B\right)}\right)\left(\frac{1-{p}_i}{p_i}\right) \). Thus it follows that if γ > ξ and \( \delta >\left(\frac{p_i\left({z}_B\right)}{1-{p}_i\left({z}_B\right)}\right)\left(\frac{1-{p}_i}{p_i}\right) \) then λS > 0, λB > 0 and \( {\lambda}_C^{-}=0 \). Thus Eqs. (7) and (8) will bind in equilibrium and the equilibrium will feature a strictly positive amount of collateral. Solving the system of first order conditions then yields the equilibrium loan size and collateral size set out in Eqs. (16) and (17). The interest rate charged to the firm follows from substituting Eqs. (16) and (17) into Eq. (8) and the payoff \( {U}_i^{\ast } \) follows from substituting the contract terms into

$$ {U}_i\left(k,R,C\right)={p}_i\left(\varphi {k}_i^{\alpha }-{R}_i{k}_i\right)-\left(1-{p}_i\right){C}_i. $$

1.1.1 Properties of the Equilibrium with identical customers

The derivative of \( {k}_i^{\ast } \) with respect to γ is

$$ \frac{d{k}_i^{\ast }}{d\gamma}=-\left(\frac{1}{1-\alpha}\right)\left(\frac{\left(1-q\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right){k}_i^{\ast }, $$
(A.50)

which is strictly decreasing.

The derivative of \( {U}_i^{\ast } \) with respect to γ is

$$ \frac{{\partial U}_i^{\ast }}{\partial \gamma }=-\left[\left(1-q\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)\right]{k}_i^{\ast }, $$
(A.51)

which is strictly decreasing.

The derivative of \( {C}_i^{\ast } \) with respect to γ is

$$ \frac{d{C}_i^{\ast }}{d\gamma}=\frac{1}{\delta}\left(\frac{1}{1-\xi}\right)\left[1-\left(\frac{1}{1-\alpha}\right)\left(\frac{\left(1-q\right)\left(\gamma -\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)\right]{k}_i^{\ast }. $$
(A.52)

The derivative of this is strictly positive if

$$ \left(\frac{1}{1-\alpha}\right)\left(\frac{\left(1-q\right)\left(\gamma -\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)<1. $$

This holds at sufficiently low values of γ and the left hand side of the above is zero when γ = ξ. However, at high values of γ, this inequality may not hold, especially if α is high. In this case, the derivative will be negative and the level of collateral will fall in response to an increase in regulation. As discussed in the text, the reason for this is that \( {k}_i^{\ast } \) falls in response to γ and at sufficiently high levels of α and γ, this effect dominates the increased collateral ratio and the level of collateral required falls.

1.2 Proof of Proposition 2

First, if \( \gamma \ge \xi, \delta \ge \left(\frac{p_H\left({z}_B\right)}{1-{p}_H\left({z}_B\right)}\right)\left(\frac{1-{p}_H}{p_H}\right) \) and \( W\ge {C}_L^{\ast } \) then the equilibrium contracts if the incentive compatibility constraint does not bind are given by \( {\left\{\left({k}_i^{\ast },{R}_i^{\ast },{C}_i^{\ast}\right)\right\}}_{i=\in \left\{L,H\right\}} \). Then Eq. (21) can be derived by substituting these contract terms into Eq. (19) and rearranging. If for some value of γ Eq. (21) is weakly positive, then the incentive compatibility will not bind at γ, otherwise, it will. As discussed in the text, the limit of ΛIC(γ) as γ → ξ is negative and the incentive compatibility constraint will always bind for γ ≤ ξ. On the other hand, as discussed in the text it is clear that the incentive compatibility constraint is slack at the upper-limit as γ → 1.

The rest off the proposition follows so long as \( \frac{\partial {\Lambda}_{IC}\left(\gamma \right)}{\partial \gamma }>0 \) and there exists a threshold γ ∈ [ξ, 1) such that for any γ > γ ΛIC(γ) > 0.

To show that \( \frac{\partial {\Lambda}_{IC}\left(\gamma \right)}{\partial \gamma }>0 \) note that the derivative of Eq. (21) with respect to γ can be written as

$$ {\displaystyle \begin{array}{c}\frac{\partial {\Lambda}_{IC}\left(\gamma \right)}{\partial \gamma }=\alpha {\left(\frac{p_H}{p_L}\right)}^{\frac{\alpha }{1-\alpha }}\left({p}_L-{p}_H\right)\left(\frac{q+\left(1-q\right)\xi }{1-\xi}\right)\\ {}\times {\left(\frac{\left[q+\left(1-q\right)\upgamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left[q+\left(1-q\right)\upgamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)}^{\frac{1}{1-\alpha }}\\ {}\begin{array}{c}+\alpha \left(\frac{\left(q+\left(1-q\right)\xi \right)\frac{1}{\delta}\left(\frac{p_L}{p_H}-1\right)\left(\frac{1}{1-\xi}\right)}{{\left[\left[q+\left(1-q\right)\upgamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}^2}\right)\\ {}\times \left[1-{p}_H{\left(\frac{p_H}{p_L}\right)}^{\frac{\alpha }{1-\alpha }}{\left(\frac{\left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)}^{\frac{1}{1-\alpha }}\right]\end{array}\end{array}} $$
(A.53)

A sufficient condition for \( \frac{\partial {\Lambda}_{IC}\left(\gamma \right)}{\partial \gamma }>0 \) is

$$ {p}_H{\left(\frac{p_H}{p_L}\right)}^{\frac{\alpha }{1-\alpha }}{\left(\frac{\left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)}^{\frac{1}{1-\alpha }}\le 1. $$
(A.54)

To show this, note that from the definition of \( {k}_i^{\ast } \) the following is true \( \alpha \varphi {p}_i{\left({k}_i^{\ast}\right)}^{\alpha -1}=\left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right) \). Thus Eq. (A.54) can be rewritten as

$$ {p}_H{\left(\frac{p_H}{p_L}\right)}^{\frac{\alpha }{1-\alpha }}{\left(\frac{\alpha \varphi {p}_L{\left({k}_L^{\ast}\right)}^{\alpha -1}}{\varphi {p}_H{\left({k}_H^{\ast}\right)}^{\alpha -1}}\right)}^{\frac{1}{1-\alpha }}\le 1, $$
(A.55)

which simplifies to

$$ {\left(\frac{p_H}{p_L}\right)}^{\frac{\alpha }{1-\alpha }}\frac{k_H^{\ast }}{k_L^{\ast }}\le 1, $$
(A.56)

which will always be satisfied as \( {k}_H^{\ast }<{k}_L^{\ast } \) and pL > pH.

1.3 Proof of Proposition 3

First, note that the cutoff \( \overline{\gamma} \) as defined in Proposition 3 is simply the point where \( {\hat{C}}_L={\overline{C}}_L \) which is the point where the following equation must hold

$$ {\Lambda}_{\overline{C}}\left(\gamma \right)\equiv \frac{1}{\delta}\left(\frac{\gamma -\xi }{1-\xi}\right){\overline{k}}_L-\frac{1}{\delta}\left(\frac{\frac{p_H}{p_L}\left({p}_L\varphi {\overline{k}}_L^{\alpha -1}-\left(q+\left(1-q\right)\xi \right)\right){\overline{k}}_L-{U}_H^{\ast }}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right)=0. $$
(A.57)

First note that when γ = ξ, \( {\overline{C}}_L=0 \) and \( {\hat{C}}_L>0 \) implies that \( {\Lambda}_{\overline{C}}\left(\xi \right)<0 \). Next, note that when γ = γ*, \( {C}_L={C}_L^{\ast }<{\overline{C}}_L \) and thus \( {\Lambda}_{\overline{C}}\left({\gamma}^{\ast}\right)>0 \). It follows from this that for there to exists a unique \( \overline{\gamma}\in \left(\xi, {\gamma}^{\ast}\right) \) such that \( {C}_L={\overline{C}}_L \) it is sufficient to show that \( \frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\mathrm{\partial \upgamma }}>0 \). To prove this note that differentiating Eq. (A.57) yields

$$ \frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\mathrm{\partial \upgamma }}=\left(\frac{1}{1-\xi}\right){\overline{k}}_L-\left(\frac{\left(1-q\right)\left(1-\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right){k}_H^{\ast }. $$
(A.58)

Now note that as \( \left(\frac{\left(1-q\right)\left(1-\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right) \) and \( {\overline{k}}_L>{k}_H^{\ast } \) it follows that \( \frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\mathrm{\partial \upgamma }}>0 \).

1.3.1 Analysis of optimal policy with single firm type

Planner’s First Order Condition

Equation (28) yields a first order condition for the government’s optimal policy problem when there is a single firm of type i. From Eqs. (16) and (17) the derivatives of the equilibrium contracts with respect to the parameter γ are as follows

$$ \frac{d{k}_i^{\ast }}{d\gamma}=-\left(\frac{1}{1-\alpha}\right)\left(\frac{\left(1-q\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)}{p_i\varphi \alpha {\left[{k}_i^{\ast}\right]}^{\alpha -1}}\right){k}_i^{\ast }, $$
(A.59)
$$ \frac{d{C}_i^{\ast }}{d\gamma}=\frac{1}{\delta}\left(\frac{1}{1-\xi}\right)\left(\frac{\alpha }{1-\alpha}\right)\left(\frac{\frac{1}{\alpha}\left(q+\left(1-q\right)\xi \right)-{p}_i\varphi \alpha {\left[{k}_i^{\ast}\right]}^{\alpha -1}}{p_i\varphi \alpha {\left[{k}_i^{\ast}\right]}^{\alpha -1}}\right){k}_i^{\ast }. $$
(A.60)

Substituting these derivatives into Eq. (28) yields the following

$$ {\displaystyle \begin{array}{c}\frac{\partial {\mathcal{U}}_i}{\partial \gamma }=-\left(\left(\frac{1-q}{1-\alpha}\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)\right){k}_i^{\ast}\\ {}+\left(\frac{1-q}{1-\alpha}\right)\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\frac{k_i^{\ast }}{p_i\varphi \alpha {\left[{k}_i^{\ast}\right]}^{\alpha -1}}.\end{array}} $$
(A.61)

Thus the value of γ that sets the government’s first order condition to zero is such that the marginal product of the project is given by the following equation

$$ {p}_i\varphi \alpha {\left[{k}_i^{\ast}\right]}^{\alpha -1}=\left(\frac{1+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)}{1+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1-\alpha }{1-q}\right)\left(\frac{1}{1-\xi}\right)}\right). $$
(A.62)

As the marginal product at the first best loan size is 1, it follows that the first best loan size is achieved only if this will only occur if (q + (1 − q) ξ) = α. Substituting Eq. (17) into Eq. (A.62) and rearranging the optimal γ can be written as

$$ \gamma =\xi +\left(\frac{\left(1-q\right)\left(1-\xi \right)+\left[1-\left(1-\alpha \right)\left(\frac{q+\left(1-q\right)\xi }{\left(1-q\right)\left(1-\xi \right)}\right)\right]\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)}{\left[\left(1-q\right)+\left(\frac{1-\eta }{\eta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)\right]\left[1+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1-\alpha }{1-q}\right)\left(\frac{1}{1-\xi}\right)\right]}\right). $$
(A.63)

It follows from the above that a sufficient condition for the government to impose a binding regulatory constraint such that γ > ξ is the following

$$ \left(\frac{1-\delta }{\delta}\right)\left[1-\left(1-\alpha \right)\left(\frac{q+\left(1-q\right)\xi }{\left(1-q\right)\left(1-\xi \right)}\right)\right]>0. $$
(A.64)

Proof of \( \frac{d{\gamma}_i^{OPT}}{d{p}_i}>0 \)

The implicit function theorem can be used to show that \( \frac{d{\gamma}_i^{OPT}}{d{p}_i}>0 \). First, consider ΛF, i, a simple transformation of Eq. (A.61) defined as

$$ {\Lambda}_{F,i}\equiv \left(\frac{1-\alpha }{1-q}\right)\frac{\partial {\mathcal{U}}_i}{\partial \gamma}\frac{1}{k_i^{\ast }}. $$
(A.65)

Now note the partial derivatives of this function with respect to γ and pi are

$$ \frac{\partial {\Lambda}_{F,i}}{\partial \gamma }=-\left(\frac{\left(1+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\right)\left(\left(1-q\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1}{1-\xi}\right)\right)}{{\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}^2}\right)<0, $$
(A.66)

and

$$ \frac{\partial {\Lambda}_{F,i}}{\partial {p}_i}=\left[\left(\frac{1-\alpha }{1-q}\right)-\left(\frac{\left(q+\left(1-q\right)\xi \right)\left(\left(1-\gamma \right)\right)}{{\left[\left(q+\left(1-a\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}^2}\right)\right]\left(\frac{1-\delta }{\delta}\right)\left(\frac{1}{1-\xi}\right). $$
(A.67)

The latter derivative is positive around the optimum, that is around the point where ΛF, i = 0. To see this note that at ΛF, i the following must hold

$$ \left(\frac{1-\alpha }{1-q}\right)\left(\frac{1}{1-\xi}\right)\left(\frac{1-\delta }{\delta}\right)=\left(\frac{1}{1-{p}_i}\right)\left(\frac{\left(1-q\right)\left(1-\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_i\right)\left(\frac{1-\gamma }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(1-{p}_i\right)\left(\frac{1-\delta }{\delta}\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right). $$
(A.68)

Substituting this into the above equation and rearranging shows that \( \frac{\partial {\Lambda}_{F,i}}{\partial {p}_i}>0 \). It follows immediately from the implicit function theorem that \( \frac{d{\gamma}_i^{OPT}}{d{p}_i}>0 \) and thus \( {\gamma}_H^{OPT}<{\gamma}_L^{OPT} \).

1.3.2 Analysis of optimal policy with two firm types

Equation (32) is the first order condition for the government’s optimal policy problem when there are two firm types. As the high-risk firm will receive \( \left({k}_H^{\ast },{R}_H^{\ast },{C}_H^{\ast}\right) \), the derivatives \( \frac{d{k}_H^{\ast }}{d\gamma} \) and \( \frac{d{C}_H^{\ast }}{d\gamma} \) are given by Eqs. (A.59) and (A.60) respectively.

The value of \( {\hat{C}}_L \) can be found from combining Eqs. (8) and (19) with the value of \( {\hat{k}}_L \) defined in Eq. (31) such that \( {\hat{C}}_L \) must satisfy the following equation

$$ {\hat{C}}_L=\frac{1}{\delta}\left(\frac{\frac{p_H}{p_L}\left({p}_L\varphi {\left({\hat{k}}_L\right)}^{\alpha -1}-\Big(q+\left(1-q\right)\xi \right){\hat{k}}_L-{\pi}_H^{\ast }}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right). $$
(A.69)

The derivative \( \frac{d{C}_H^{\ast }}{d\gamma} \) can then be found by totally differentiating the above equation with respect to γ.

In the first case where \( {\hat{C}}_L\ge {\overline{C}}_L \), the derivative is simply

$$ \frac{d{\hat{C}}_L}{d\gamma}=\frac{1}{\delta}\left(\frac{\left(1-q\right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)\left(\frac{1}{1-\xi}\right)}{1-\left(\frac{p_H}{p_L}\right)\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)}\right){k}_H^{\ast }>0. $$
(A.70)

It follows that when \( {\hat{C}}_L\ge {\overline{C}}_L,\frac{d{\hat{C}}_L}{d\gamma}>0 \) and an increase in regulation results in a larger collateral requirement.

Next consider the case where \( {\hat{C}}_L<{\overline{C}}_L \). The derivative becomes

$$ \frac{d{\hat{C}}_L}{d\gamma}=\frac{1}{\delta}\left(\frac{1}{1-\xi}\right)\left(\frac{\left(1-q\right)\left(1-\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)\left(\frac{1}{1-\xi}\right)\iota }{1-\left(\frac{p_H}{p_L}\right)\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)-\frac{{\hat{k}}_L}{k_H^{\ast }}\iota}\right){k}_H^{\ast }, $$
(A.71)

where

$$ \iota \equiv \left(\frac{1-\xi }{\gamma -\xi}\right)\frac{p_H}{p_L}\left(\alpha {p}_L\varphi {\left({k}_L\right)}^{\alpha -1}-\left(q+\left(1-q\right)\xi \right)\right)\ge 0. $$
(A.72)

From Eq. (31) it follows that for any γ ∈ [1, ξ) that \( \alpha {p}_L\varphi {\left({\hat{k}}_L\right)}^{\alpha -1}\ge \left(q+\left(1-q\right)\xi \right) \) and thus ι > 0 and is increasing in γ above \( \overline{\upgamma} \). As \( \frac{d{\hat{C}}_L}{d\gamma} \) is decreasing in ι, it follows that the derivative will be decreasing in γ.

1.3.3 Analysis of Returns to scale

Impact of α on \( {\hat{C}}_L \) and \( {\hat{k}}_L \)

First, note that the incentive compatibility constraint binds so long as F = 0 where the function F is defined below as

$$ {\displaystyle \begin{array}{c}F\equiv \frac{p_H}{p_L}\left({p}_L\varphi {\hat{k}}_L^{\alpha }-\left(q+\left(1-q\right)\xi \right){\hat{k}}_L\right)\\ {}-\delta \left[1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)\right]{\hat{C}}_L-{U}_H^{\ast }=0\end{array}} $$
(A.73)

When \( {C}_L\ge {\overline{C}}_L \) the derivative for \( {\hat{k}}_L \) with respect to α is

$$ \frac{\partial {\hat{k}}_L}{\partial \alpha }=\frac{1}{{\left(1-\alpha \right)}^2\alpha}\left(\alpha \ln \left(\frac{\alpha {p}_L\varphi }{q+\left(1-q\right)\xi}\right)+\left(1-\alpha \right)\right){\hat{k}}_L, $$
(A.74)

thus given the assumption that αpHφ ≥ 1 the derivative is strictly positive. The derivative with respect to \( {\hat{C}}_L \) can be found through application of the implicit function theorem to the function F. The partial derivative of F with respect to \( {\hat{C}}_L \) is

$$ \frac{\partial F}{\partial {\hat{C}}_L}=-\delta \left[1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)\right]<0. $$
(A.75)

The partial derivative of F with respect to α is

$$ \frac{\partial F}{\partial \alpha }=\frac{p_H}{p_L}\left(\alpha {p}_L\varphi {\hat{k}}_L^{\alpha -1}-\left(q+\left(1-q\right)\xi \right)\right)\frac{\partial {\hat{k}}_L}{\partial \alpha }-\frac{\partial {U}_H^{\ast }}{\partial \alpha }. $$
(A.76)

Note that when \( {C}_L\ge {\overline{C}}_L \) then \( \alpha {p}_L\varphi {\hat{k}}_L^{\alpha -1}=\left(q+\left(1-q\right)\xi \right) \) and thus,

$$ \frac{\partial F}{\partial \alpha }=\frac{\partial {U}_H^{\ast }}{\partial \alpha }, $$
(A.77)

where

$$ \frac{\partial {U}_H^{\ast }}{\partial \alpha }={p}_H\varphi\ \ln \left({k}_H^{\ast}\right){\left({k}_H^{\ast}\right)}^{\alpha }, $$
(A.78)

is strictly positive due to the assumption that αpHφ ≥ 1 . Thus from the implicit function theorem it follows that \( \frac{d{\hat{C}}_L}{d\alpha}<0 \).

When \( {C}_L<{\overline{C}}_L \) the derivative for \( {\hat{k}}_L \) with respect to α becomes

$$ {\displaystyle \begin{array}{c}\frac{\partial F}{\partial {\hat{C}}_L}=\frac{p_H}{p_L}\left(\alpha {p}_L\varphi {\hat{k}}_L^{\alpha -1}-\left(q+\left(1-q\right)\xi \right)\right){\hat{k}}_L^{\alpha -1}\left(\frac{1-\xi }{\gamma -\xi}\right)\\ {}-\delta \left[1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_H\right)\right].\end{array}} $$
(A.79)

The sign of the above equation can be found by noting that \( {\hat{k}}_L\ge {k}_L^{\ast } \) and thus

$$ \alpha {p}_L\varphi {\hat{k}}_L^{\alpha -1}\le \left[q+\left(1-q\right)\gamma \right]+\left(\frac{1-\delta }{\delta}\right)\left(1-{P}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right). $$
(A.80)

Substituting this into inequality into the above derivative is enough to show that \( \frac{\partial F}{\partial {\hat{C}}_L}<0 \) as before.

Next, note that the derivative of F with respect to α is

$$ \frac{\partial F}{\partial \alpha }=\frac{p_H}{p_L}\left({p}_L\varphi {k}_L^{\alpha }\ \ln \left({k}_L\right)\right)-\frac{\partial {U}_H^{\ast }}{\partial \alpha }, $$
(A.81)

where

$$ \frac{\partial {U}_H^{\ast }}{\partial \alpha }={p}_H\varphi\ \ln \left({k}_H^{\ast}\right){\left({k}_H^{\ast}\right)}^{\alpha }. $$
(A.82)

Thus the derivative can be written as

$$ \frac{\partial F}{\partial \alpha }={p}_H\varphi \left[{k}_L^{\alpha }\ \ln \left({k}_L\right)-{k}_H^{\alpha }\ \ln \left({k}_H\right)\right], $$
(A.83)

which is strictly positive. Hence through application of the implicit function theorem \( \frac{d{\hat{C}}_L}{d\alpha}>0 \).

Proof that \( \frac{d\overline{\gamma}}{d\alpha}<0 \)

The derivative \( \frac{d\overline{\gamma}}{d\alpha} \) can be found by applying the implicit function theorem to the function \( {\Lambda}_{\overline{C}} \) as defined in Eq. (A.57). The partial derivative of \( {\Lambda}_{\overline{C}} \) with respect to α is

$$ \frac{\partial {\Lambda}_{\overline{C}}}{\partial \alpha }=\frac{1}{\delta }{p}_H\varphi \left(\frac{\ln \left({\overline{k}}_L\right){\left({\overline{k}}_L\right)}^{\alpha }-\ln \left({k}_H^{\ast}\right){\left({k}_H^{\ast}\right)}^{\alpha }}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right)>0. $$

As this partial derivative is strictly positive, and it has already been found that \( \frac{\partial {\Lambda}_{\overline{C}}}{\partial \gamma }>0 \), it follows from the implicit function theorem that \( \frac{d\overline{\gamma}}{d\alpha}<0 \).

Proof that \( \frac{d{\gamma}^{\ast }}{d\alpha}<0 \)

The derivative \( \frac{d{\gamma}^{\ast }}{d\alpha} \) can be found by applying the implicit function theorem to the function ΛIC as defined in Eq. (21). The partial derivative of ΛIC with respect to α is

$$ {\displaystyle \begin{array}{c}\frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \alpha }={\left(\frac{1}{1-\alpha}\right)}^2{\left(\frac{p_{H\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}}{p_{L\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}}\right)}^{\frac{\alpha }{1-\alpha }}\\ {}\times \ln \left(\frac{p_H\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}{p_L\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}\right)\\ {}+{\left(\frac{1}{1-\alpha}\right)}^2\left(\frac{\frac{1}{\delta}\left(\frac{p_H}{p_L}-1\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right).\end{array}} $$
(A.84)

Now note that around ΛIC = 0, that is around the point where γ = γ*, the following must.hold

$$ {\displaystyle \begin{array}{c}{\left(\frac{p_H\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}{p_L\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}\right)}^{\frac{\alpha }{1-\alpha }}\\ {}=\left[1-\left(\frac{\alpha }{1-\alpha}\right)\left(\frac{\frac{1}{\delta}\left(\frac{p_H}{p_L}-1\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)\right].\end{array}} $$
(A.85)

Thus by substituting this equation into the partial derivative above, at the point γ = γ*, the partial derivative can be written as

$$ \frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \alpha }=\left(\frac{1-\alpha }{\alpha}\right){\left(\frac{1}{1-\alpha}\right)}^2\left[\left(1-x\right)\ln \left(1-x\right)+x\right], $$
(A.86)

where

$$ x=\left(\frac{\alpha }{1-\alpha}\right)\left(\frac{\frac{1}{\delta}\left(\frac{p_L}{p_H}-1\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}{\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)}\right)>0. $$
(A.87)

Thus it follows that \( \frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \alpha }>0 \) and as it has already been established that \( \frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \gamma }>0 \) from application of the implicit function theorem it follows that \( \frac{d{\upgamma}^{\ast }}{d\alpha}<0 \).

1.3.4 Analysis of Collateral

Impact of δ on \( {\hat{C}}_L \) and \( {\hat{k}}_L \)

When \( {C}_L\ge {\overline{C}}_L \) the derivative for \( {\hat{k}}_L \) with respect to δ is equal to zero and thus the partial derivative of F, as defined by Eq. (A.73) can be written as

$$ \frac{\partial F}{\partial \delta }=-\frac{\partial {U}_H^{\ast }}{\partial \delta }, $$
(A.88)

where

$$ \frac{\partial {U}_H^{\ast }}{\partial \delta }={\left(\frac{1}{\delta}\right)}^2\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right){k}_H^{\ast}\ge 0. $$
(A.89)

Thus it follows that \( \frac{\partial F}{\partial \delta }<0 \) and through Eq. (A.75) which states that \( \frac{\partial F}{\partial {\hat{C}}_L}<0 \) and application of the implicit function theorem it follows that \( \frac{d{\hat{C}}_L}{d\delta}>0 \). As \( \frac{\partial {\hat{k}}_L}{\partial \delta }=0 \) this implies that the collateral ratio is increasing in δ when \( {C}_L\ge {\overline{C}}_L \).

When \( {C}_L\ge {\overline{C}}_L \) the collateral ratio is determined by the following relationship

$$ \frac{{\hat{C}}_L}{{\hat{k}}_L}=\frac{1}{\varepsilon}\left(\frac{\gamma -\xi }{1-\xi}\right), $$
(A.90)

and thus the collateral ratio is decreasing in δ when \( {C}_L\ge {\overline{C}}_L \).

Proof that \( \frac{d\overline{\gamma}}{d\delta}>0 \)

The derivative \( \frac{d\overline{\gamma}}{d\delta} \) can be found by applying the implicit function theorem to the function \( {\Lambda}_{\overline{C}} \) as defined in Eq. (A.57). The partial derivative of \( {\Lambda}_{\overline{C}} \) with respect to δ can be written as

$$ {\displaystyle \begin{array}{c}\frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\mathrm{\partial \updelta }}=-\frac{1}{\delta }{\Lambda}_{\overline{C}}-\frac{1}{\delta^3}\left(1-{p}_H\right)\left(\frac{\frac{p_H}{p_L}\left({p}_L\varphi {\overline{k}}_L^{\alpha -1}-\left(q+\left(1-q\right)\xi \right)\right){\overline{k}}_L-{U}_H^{\ast }}{{\left(1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\right)}^2}\right)\\ {}+\frac{1}{\delta}\left(\frac{\frac{\partial {U}_H^{\ast }}{\mathrm{\partial \updelta }}}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right),\end{array}} $$
(A.91)

where \( \frac{{\partial U}_H^{\ast }}{\partial \delta }={\left(\frac{1}{\delta}\right)}^2\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right){k}_H^{\ast }>0 \).

Note that at the point where \( \upgamma =\overline{\upgamma} \) it must be the case that \( {\Lambda}_{\overline{C}}=0 \) and thus the above equation can be written as

$$ \frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\partial \delta }=-\frac{1}{\delta^3}\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\left(\frac{{\overline{k}}_L-{k}_H^{\ast }}{1-\frac{p_H}{p_L}\left(q+\left(1-q\right)\xi \right)\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)}\right)<0. $$
(A.92)

As this partial derivative is strictly negative, and it has already been found that \( \frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\partial \gamma }>0 \), it follows from the implicit function theorem that \( \frac{d\overline{\gamma}}{d\delta}>0 \).

Proof that \( \frac{d{\gamma}^{\ast }}{d\delta}>0 \)

The derivative \( \frac{d{\gamma}^{\ast }}{d\delta} \) can be found by applying the implicit function theorem to the function ΛIC as defined in Eq. (21). The partial derivative of ΛIC with respect to δ is

$$ {\displaystyle \begin{array}{c}\frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\partial \delta }=B\left(q+\left(1-q\right)\gamma \right){\left(\frac{p_H\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}{p_L\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}\right)}^{\frac{1}{1-\alpha }}\\ {}-B\frac{1}{p_L}\left[\left(q+\left(1-q\right)\gamma \right)-\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right],\end{array}} $$
(A.93)

where

$$ B=\frac{\frac{1}{\delta^2}\left(\frac{\alpha }{1-\alpha}\right)\left(\frac{p_L}{p_H}-1\right)\left(\frac{\gamma -\xi }{1-\xi}\right){p}_L}{{\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}^2}>0. $$
(A.94)

Now note that around \( {\Lambda}_{\overline{C}}=0 \), that is around the point where γ = γ*, Eq. (A.85) must hold and the partial derivative can be written as

$$ {\displaystyle \begin{array}{c}\frac{{\mathrm{\partial \Lambda}}_{\overline{C}}}{\partial \delta }=-B\left(\frac{1}{p_L}-1\right)\left(q+\left(1-q\right)\xi \right)\left(\frac{1-\gamma }{1-\xi}\right)\\ {}-B\left(q+\left(1-q\right)\gamma \right)\left[1-{\left(\frac{p_H\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_L\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}{p_L\left[\left(q+\left(1-q\right)\gamma \right)+\left(\frac{1-\delta }{\delta}\right)\left(1-{p}_H\right)\left(\frac{\gamma -\xi }{1-\xi}\right)\right]}\right)}^{\frac{1}{1-\alpha }}\right],\end{array}} $$

which is strictly negative. Thus it follows that \( \frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \delta }<0 \) and as it has already been established that \( \frac{{\mathrm{\partial \Lambda}}_{IC}}{\partial \gamma }>0 \) from application of the implicit function theorem it follows that \( \frac{d{\gamma}^{\ast }}{d\delta}>0 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemingway, B. Banking Regulation and Collateral Screening in a Model of Information Asymmetry. J Financ Serv Res 61, 367–405 (2022). https://doi.org/10.1007/s10693-021-00357-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10693-021-00357-w

Keywords

JEL Codes

Navigation