Skip to main content
Log in

Theoretical Basis for Designing High-Modulus Polymer Fibers and Nanocomposites Based on Them

  • Published:
Fibre Chemistry Aims and scope

The basic structural factors enabling the design of high-modulus and high-strength nanocomposites (polymer/carbon-nanotube) with mechanical characteristics analogous to the corresponding parameters of steel are studied in the framework of fractal analysis and percolation theory. The main factor is the formation in the polymer matrix of carbon-nanotube tows consisting of many of them with a structural fractal dimension close to Euclidean (close to three). Such tows have an elastic modulus close to the nominal value of a separate nanotube. The proposed procedure allows the limiting mechanical characteristics of nanocomposites to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. S. Iijima, Nature, 354, No. 6348, 56-58 (1991).

    Article  CAS  Google Scholar 

  2. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, No. 16, 5194-5205 (2006).

    Article  CAS  Google Scholar 

  3. X. Wang, Z. Z. Yong, et al., Mater. Res. Lett., 1, No. 1, 19-25 (2013).

    Article  CAS  Google Scholar 

  4. Q. F. Cheng, J. P. Wang, et al., Carbon, 48, No. 1, 260-266 (2010).

    Article  CAS  Google Scholar 

  5. Q.-P. Feng, J.-P. Yang, et al., Carbon, 48, No. 7, 2057-2062 (2010).

    Article  CAS  Google Scholar 

  6. P. D. Bradford, X. Wang, et al., Compos. Sci. Technol., 70, No. 13, 1980-1985 (2010).

    Article  CAS  Google Scholar 

  7. D. W. Schaefer, J. Zhao, et al., Soft Matter, 4, No. 10, 2071-2079 (2008).

    Article  CAS  Google Scholar 

  8. A. K. Mikitaev and G. V. Kozlov, Dokl. Akad. Nauk, 462, No. 1, 41-44 (2015).

    Google Scholar 

  9. K. Kobashi, H. Nishino, et al., Carbon, 49, No. 23, 5090-5098 (2011).

    Article  CAS  Google Scholar 

  10. P. Podsiadlo, A. K. Kaushik, et al., Science, 318, No. 1, 80-83 (2007).

    Article  CAS  Google Scholar 

  11. D. Blond, V. Barron, et al., Adv. Funct. Mater., 16, No. 5, 1608-1614 (2006).

    Article  CAS  Google Scholar 

  12. G. V. Kozlov, P. G. Rizvanova, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 62, No. 1, 112-116 (2019).

  13. G. V. Kozlov and I. V. Dolbin, Vestn. Mashinostr., No. 3, 77-79 (2019).

  14. G. V. Kozlov, I. V. Dolbin, and G. E. Zaikov, The Fractal Physical Chemistry of Polymer Solutions and Melts, Apple Academic Press, Toronto, New Jersey, 2014, p. 316.

    Google Scholar 

  15. A. K. Mikitaev and G. V. Kozlov, Fiz. Khim. Obrab. Mater., No. 4, 65-69 (2015).

  16. B. Pukanszky, Composites, 21, No. 2, 255-262 (1990).

    Article  CAS  Google Scholar 

  17. A. K. Mikitaev, G. V. Kozlov, and G. E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications [in Russian], Nauka, Moscow, 2009, p. 278.

    Google Scholar 

  18. Kh. Sh. Yakh’yaeva, G. M. Magomedov, and G. V. Kozlov, Structure and Adhesion Effects in Polymer Systems [in Russian], Izd. Pero, Moscow, 2016, p. 254.

    Google Scholar 

  19. Yu. G. Yanovsky, G. V. Kozlov, et al., Nanosci. Technol. Int. J., 3, No. 2, 99-124 (2012).T

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Additional information

Translated from Khimicheskie Volokna, No. 1, pp. 51-54, January—February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, G.V., Dolbin, I.V. Theoretical Basis for Designing High-Modulus Polymer Fibers and Nanocomposites Based on Them. Fibre Chem 53, 46–49 (2021). https://doi.org/10.1007/s10692-021-10237-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10237-7

Navigation