Skip to main content
Log in

Change of Silk Fibroin Molecular Mass During Dissolution in Ionic Liquids

  • Published:
Fibre Chemistry Aims and scope

Silk fibroin is a unique protein polymer with broad potential for medical applications. Fibroin is significantly degraded and the materials obtained from it have poor mechanical characteristics if silk fiber is dissolved in traditional solvents. The present work used gel electrophoresis to study the dissolution of fibroin in ionic liquids. Fibroin degradation was shown to increase with increasing temperature and dissolution time. The optimal conditions for dissolution that allowed the heavy and light chains of fibroin to be preserved intact were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Zuo, L. Dai, and Z. Wu, J. Mater. Sci., 41, 3357 (2006).

    CAS  Google Scholar 

  2. B. Kundu, R. Rajkhowa, and S. C. Kundu, Adv. Drug Delivery Rev., 65, No. 4, 457 (2013).

    CAS  Google Scholar 

  3. E. C. Filipe, M. Santos, et al., JACC Basic Transl. Sci., 3, No. 1, 38 (2017).

    Google Scholar 

  4. D. L. Kaplan and C. Vepari, Prog. Polym. Sci., 32, 991 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. R. Rajkhowa, V. B. Gupta, and V. K. Kothari, J. Appl. Polym. Sci., 7, No. 11, 2418 (2000).

    Google Scholar 

  6. L. A. Safonova, M. M. Bobrova, et al., Sovrem. Tekhnol. Med. (Mod. Technol. Med.), 7, No. 3, 6 (2015).

    Google Scholar 

  7. C. Correia, S. Bhumiratana, et al., Acta Biomater., 8, No. 7, 2483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. X. Liu, C. Zhang, et al., Mater. Lett., 65, No. 15, 2489 (2011).

    CAS  Google Scholar 

  9. M. Lovett, G. Eng, et al., Organogenesis, 6, No. 4, 217 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. T. Rosenau, A. Potthast, et al., Holzforschung, 56, No. 2, 199 (2005).

    Google Scholar 

  11. S. Ling, Z. Qin, et al., Nat. Commun., 8, Art. No. 1387, 1 (2017).

  12. D. M. Phillips, L. F. Drummy, et al., J. Am. Chem. Soc., 126, 14350 (2004).

    CAS  PubMed  Google Scholar 

  13. M. K. Gupta, S. K. Khokhar, et al., Langmuir, 23, 1315 (2007).

    CAS  PubMed  Google Scholar 

  14. A. Schindl, M. L. Hagen, et al., Front. Chem., 7, 347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Wongpanit, Y. Tabata, and R. Rujiravanit, Macromol. Biosci., 7, 1258 (2007).

    CAS  PubMed  Google Scholar 

  16. H. Kweon, H. C. Ha, et al., J. Appl. Polym. Sci., 80, 928 (2001).

    CAS  Google Scholar 

  17. P. N. Niamsa, Y. Srisuwan, et al., Carbohydr. Polym., 78, 60 (2009).

    CAS  Google Scholar 

  18. E. Morsano, P. Corsini, et al., J. Biol. Macromol., 43, 106 (2008).

    Google Scholar 

  19. Y. Noishiki, Y. Nishiyama, et al., J. Appl. Polym. Sci., 86, 3425 (2002).

    CAS  Google Scholar 

  20. G. Strobin, D. Wawro, et al., Fibres Text. East. Eur., 14, 32 (2006).

    CAS  Google Scholar 

  21. E. Marsano, M. Canetti, et al., J. Appl. Polym. Sci., 104, 2187 (2007).

    CAS  Google Scholar 

  22. R. Li, Y. Zhang, et al., J. Appl. Polym. Sci., 124, 2080 (2012).

    CAS  Google Scholar 

  23. D. M. Phillips, L. F. Drummy, et al., J. Mater. Chem., 15, No. 39, 4206 (2005).

    CAS  Google Scholar 

  24. C. Yue, D. Fang, et al., J. Mol. Liq., 163, No. 3, 99 (2011).

    CAS  Google Scholar 

  25. S. Shang, L. Zhu, et al., Carbohydr. Polym., 86, 462 (2011).

    CAS  Google Scholar 

  26. R. Wang, Z. Zhu, et al., J. Cleaner Prod., 203, No. 1, 492 (2018).

    CAS  Google Scholar 

  27. H. J. Kim, M. K. Kim, et al., J. Biol. Macromol., 104, No. 2, 94 (2017).

    Google Scholar 

  28. B. J. Allardyce, R. Rajkhova, et al., J. Text. Res., 86, No. 3, 275 (2015).

    Google Scholar 

  29. Z. Wang, H. Yang, et al., J. Text. Inst., 110, No. 1, 134 (2018).

    Google Scholar 

  30. B. P. Partlow, A. P. Tabatabai, et al., Macromol. Biosci., 16, No. 5, 666 (2016).

    CAS  PubMed  Google Scholar 

  31. Q. Wang, Q. Chen, et al., Biomacromolecules, 14, 285 (2013).

    CAS  PubMed  Google Scholar 

  32. H. J. Cho, C. S. Ki, et al., J. Biol. Macromol., 51, No. 3, 336 (2012).

    CAS  Google Scholar 

  33. G. Cheng, X. Wang, et al., J. Appl. Polym. Sci., 132, No. 22, 41959 (2015).

    Google Scholar 

  34. Y. H. Kim, C. S. Cho, et al., Key Eng. Mater., 342–343, 813 (2007).

    Google Scholar 

  35. B. Zuo, L. Liu, and Z. Wu, J. Appl. Polymer Sci., 106, No. 1, 53 (2007).

    CAS  Google Scholar 

  36. H. Y. Wang and Y. Q. Zhang, Soft Matter, 9, 138 (2013).

    CAS  Google Scholar 

  37. A. I. Susanin, E. S. Sashina, et al., Russ. J. Appl. Chem., 91, No. 7,1193 (2018).

    CAS  Google Scholar 

  38. R. You, Y. Zhang, et al., Nat. Sci., 5, No. 6, 10 (2013).

    CAS  Google Scholar 

  39. J. Nam and Y. H. Park, J. Appl. Polym. Sci., 81, No. 12, 3008 (2001).

    CAS  Google Scholar 

  40. A. I. Susanin, E. S. Sashina, et al., Vestn. SPbGUPTD, No. 4, 50 (2017).

    Google Scholar 

  41. H. Yamada, H. Nakao, et al., Mater. Sci. Eng., C, 14, 41 (2001).

    Google Scholar 

  42. Q. Wang, Y. Yang, et al., Biomacromolecules, 13, No. 6, 1875 (2012).

    CAS  PubMed  Google Scholar 

  43. A. I. Susanin, E. S. Sashina, et al., Fibre Chem., 49, No. 2, 88 (2017).

    CAS  Google Scholar 

  44. A. I. Susanin, E. S. Sashina, et al., Russ. J. Appl. Chem., 91, No. 4, 647 (2018).

    CAS  Google Scholar 

  45. A. A. Lozano-Perez, M. G. Montalban, et al., J. Appl. Polym. Sci., 132, No. 12, 41702 (2015).

    Google Scholar 

  46. J. R. Harjani, R. D. Singer, et al., Green Chem., 11, No. 1, 83 (2009).

    CAS  Google Scholar 

  47. A. B. Pereiro, A. Rodriguez, et al., J. Chem. Eng. Data, 56, No. 12, 4356 (2011).

    CAS  Google Scholar 

  48. T. Heinze, K. Schwikal, and S. Barthel, Macromol. Biosci., 5, No. 6, 520 (2005).

    CAS  PubMed  Google Scholar 

  49. D. A. Kashirskii, Candidate Dissertation in Chemical Sciences, SPbGUTU(TI), St. Petersburg, 2016, 155 pp.

    Google Scholar 

  50. https://web.expasy.org/protparam/Bioinformatics Resource Portal (accessed Mar. 15, 2019).

  51. E. S. Sashina, Yu. Golubikhin, and A. I. Susanin, Fibre Chem., 47, No. 4, 253 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Susanin.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 75-79, May—June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susanin, A.I., Sashina, E.S., Novoselov, N.P. et al. Change of Silk Fibroin Molecular Mass During Dissolution in Ionic Liquids. Fibre Chem 52, 208–213 (2020). https://doi.org/10.1007/s10692-020-10182-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10182-x

Navigation