Skip to main content
Log in

Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps

  • Original Research
  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

In this article, we develop a semi-analytical solution for a structural model that combines jump and regime switching risk. We use an Esscher transform that is applicable to regime switching double exponential jump diffusion to move from the historical world to the risk-neutral world. Further, we define and implement a matrix Wiener–Hopf factorization associated with the latter process, allowing us to price the various components of balance sheet. We illustrate the model with a study of a bank that issues contingent convertible bonds (CoCos). Thus, we obtain valuation formulas for the bank’s equity, debt, deposits, CoCos, and deposit insurance. We also show in an illustration the respective effects of the jump risk and of regime switching on the values of all of a bank’s balance sheet components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The probabilistic explanations of Eqs. (3.5) and (3.6) are the same. We demonstrate the eq. (3.6) in the case \(\mathfrak {R}({\bar{\beta }}_j)\ne 0\). The equation \(f(-{\bar{\beta }}_j)=0\) implies that

    $$\begin{aligned} M^j_t=\langle \varvec{\gamma }_{2n+j},\varvec{Y}_t\rangle e^{{\bar{\beta }}_j A_t} \end{aligned}$$

    is a martingale. Because \(\mathfrak {R}({\bar{\beta }}_j)< 0\), \(M^j_t\) is bounded on \([0,\tau _0^-]\). Then, the Doob’s optional sample theorem yields:

    $$\begin{aligned} \gamma _{2n+j,k}=E_{\varvec{s}_k}(\langle \varvec{\gamma }_{2n+j},\varvec{{\widetilde{Y}}}^-_0 \rangle )=\left\{ \begin{aligned} (\zeta ^{(\varvec{a},-)} \varvec{{\bar{\vartheta }}}_j)_k&\qquad {\text {if }} k=1,2,\ldots ,n \\ {\bar{\vartheta }}_{j,k-n}&\qquad {\text {if }} k=n+1,n+2,\ldots ,3n \\ \end{aligned} \right. . \end{aligned}$$
  2. The Swiss banking regulatory institution points out that for the minimum capital ratio 19% of Swiss banks, 9% can compose of contingent convertible capital. Thus, we chose 10% for the proportion of CoCos in the capital structure.

  3. The Gaver–Stehfest algorithm does the inversion on the real line. For main advantages of this algorithm see in Kou and Wang (2003). Note that the definition of the matrix Wiener–Hopf factorization also works for complex \(\varvec{{\widehat{a}}}\). Thus, other numerical Laplace inversion algorithms, such as the Abate-Whitt method, can also be used.

References

  • Ang, A., & Bekaert, G. (2002). International asset allocation with regime shifts. The Review of Financial Studies, 15(4), 1137–1187.

    Google Scholar 

  • Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3), 443–494.

    Google Scholar 

  • Asmussen, S., Avram, F., & Pistorius, M. R. (2004). Russian and American put options under exponential phase-type Lévy models. Stochastic Processes and their Applications, 109(1), 79–111.

    Google Scholar 

  • Ball, C. A., & Torous, W. N. (1983). A simplified jump process for common stock returns. Journal of Financial and Quantitative analysis, 18(1), 53–65.

    Google Scholar 

  • Barlow, M. T., Rogers, L., & Williams, D. (1980). Wiener–Hopf factorization for matrices. In Séminaire de Probabilités XIV 1978/79 (pp. 324–331). Springer.

  • Bell, R. (2015). Credit modelling and regime-switching, Ph.D. thesis, Imperial College London.

  • Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. The Journal of Finance, 31(2), 351–367.

    Google Scholar 

  • Bo, L., Wang, Y., & Yang, X. (2010). Markov-modulated jump—diffusions for currency option pricing. Insurance: Mathematics and Economics, 46(3), 461–469.

    Google Scholar 

  • Chen, N., Glasserman, P., Nouri, B., & Pelger, M. (2017). Contingent capital, tail risk, and debt-induced collapse. The Review of Financial Studies, 30(11), 3921–3969.

    Google Scholar 

  • Chen, N., & Kou, S. G. (2009). Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk. Mathematical Finance, 19(3), 343–378.

    Google Scholar 

  • Cremers, K. M., Driessen, J., & Maenhout, P. (2008). Explaining the level of credit spreads: Option-implied jump risk premia in a firm value model. The Review of Financial Studies, 21(5), 2209–2242.

    Google Scholar 

  • Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423–432.

    Google Scholar 

  • Elliott, R. J., & Osakwe, C.-J. U. (2006). Option pricing for pure jump processes with Markov switching compensators. Finance and Stochastics, 10(2), 250–275.

    Google Scholar 

  • Elliott, R. J., & Shen, J. (2015). Dynamic optimal capital structure with regime switching. Annals of Finance, 11(2), 199–220.

    Google Scholar 

  • Elliott, R. J., Siu, T. K., Chan, L., & Lau, J. W. (2007). Pricing options under a generalized Markov-modulated jump-diffusion model. Stochastic Analysis and Applications, 25(4), 821–843.

    Google Scholar 

  • Gerber, H. U., Shiu, E. S., et al. (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries, 46(99), 140.

    Google Scholar 

  • Glasserman, P., & Nouri, B. (2012). Contingent capital with a capital-ratio trigger. Management Science, 58(10), 1816–1833.

    Google Scholar 

  • Glasserman, P., & Nouri, B. (2016). Market-triggered changes in capital structure: Equilibrium price dynamics. Econometrica, 84(6), 2113–2153.

    Google Scholar 

  • Guidolin, M., & Timmermann, A. (2005). Economic implications of bull and bear regimes in UK stock and bond returns. The Economic Journal, 115(500), 111–143.

    Google Scholar 

  • Guidolin, M., & Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11), 3503–3544.

    Google Scholar 

  • Guidolin, M., & Timmermann, A. (2008). International asset allocation under regime switching, skew, and kurtosis preferences. Review of financial studies, 21(2), 889–935.

    Google Scholar 

  • Guo, X. (2001). An explicit solution to an optimal stopping problem with regime switching. Journal of Applied Probability, 38(2), 464–481.

    Google Scholar 

  • Hainaut, D., Shen, Y., & Zeng, Y. (2016). How do capital structure and economic regime affect fair prices of banks equity and liabilities? Annals of Operations Research, pp. 1–27.

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Google Scholar 

  • Hilberink, B., & Rogers, L. C. G. (2002). Optimal capital structure and endogenous default. Finance and Stochastics, 6(2), 237–263.

    Google Scholar 

  • Huang, J.-Z., & Huang, M. (2012). How much of the corporate-treasury yield spread is due to credit risk? The Review of Asset Pricing Studies, 2(2), 153–202.

    Google Scholar 

  • Ivanovs, J., & Palmowski, Z. (2012). Occupation densities in solving exit problems for Markov additive processes and their reflections. Stochastic Processes and their Applications, 122(9), 3342–3360.

    Google Scholar 

  • Jarrow, R. A., & Rosenfeld, E. R. (1984). Jump risks and the intertemporal capital asset pricing model. Journal of Business, 57, 337–351.

    Google Scholar 

  • Jiang, Z., & Pistorius, M. R. (2008). On perpetual American put valuation and first-passage in a regime-switching model with jumps. Finance and Stochastics, 12(3), 331–355.

    Google Scholar 

  • Jobert, A., & Rogers, L. C. (2006). Option pricing with Markov-modulated dynamics. SIAM Journal on Control and Optimization, 44(6), 2063–2078.

    Google Scholar 

  • Jorion, P. (1988). On jump processes in the foreign exchange and stock markets. The Review of Financial Studies, 1(4), 427–445.

    Google Scholar 

  • Kijima, M., Suzuki, T., et al. (2001). A jump-diffusion model for pricing corporate debt securities in a complex capital structure. Quantitative Finance, 1(6), 611–620.

    Google Scholar 

  • Kou, S. G., & Wang, H. (2003). First passage times of a jump diffusion process. Advances in Applied Probability, 35(02), 504–531.

    Google Scholar 

  • Kyprianou, A. E., & Palmowski, Z. (2008). Fluctuations of spectrally negative Markov additive processes, Séminaire de Probabilités XLI, p. 121.

  • Le Courtois, O., & Quittard-Pinon, F. (2006). Risk-neutral and actual default probabilities with an endogenous bankruptcy jump-diffusion model. Asia-Pacific Financial Markets, 13(1), 11–39.

    Google Scholar 

  • Le Courtois, O., & Quittard-Pinon, F. (2008). The optimal capital structure of the firm with stable Lévy assets returns. Decisions in Economics and Finance, 31(1), 51–72.

    Google Scholar 

  • Leland, H. E. (1994a). Bond prices, yield spreads, and optimal capital structure with default risk, Working paper, University of California at Berkeley.

  • Leland, H. E. (1994b). Corporate debt value, bond covenants, and optimal capital structure. The Journal of Finance, 49(4), 1213–1252.

    Google Scholar 

  • Leland, H. E., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. The Journal of Finance, 51(3), 987–1019.

    Google Scholar 

  • Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. The Journal of Finance, 50(3), 789–819.

    Google Scholar 

  • Luo, P., & Yang, Z. (2017). Real options and contingent convertibles with regime switching. Journal of Economic Dynamics and Control, 75, 122–135.

    Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.

    Google Scholar 

  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1–2), 125–144.

    Google Scholar 

  • Mijatović, A., & Pistorius, M. (2011). Exotic derivatives under stochastic volatility models with jumps. In Advanced mathematical methods for finance (pp. 455–508). Springer.

  • Pennacchi, G., Vermaelen, T., & Wolff, C. C. (2014). Contingent capital: The case of COERCs. Journal of Financial and Quantitative Analysis, 49(3), 541–574.

    Google Scholar 

  • Rogers, L., & Shi, Z. (1994). Computing the invariant law of a fluid model. Journal of Applied Probability, 31(4), 885–896.

    Google Scholar 

  • Rogers, L. C., et al. (1994). Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. The Annals of Applied Probability, 4(2), 390–413.

    Google Scholar 

  • Rogers, L. C. G. (2000). Evaluating first-passage probabilities for spectrally one-sided Lévy processes. Journal of Applied Probability, 37(4), 1173–1180.

    Google Scholar 

  • Sundaresan, S., & Wang, Z. (2015). On the design of contingent capital with a market trigger. The Journal of Finance, 70(2), 881–920.

    Google Scholar 

  • Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11), 2015–2040.

    Google Scholar 

Download references

Acknowledgements

The research was supported by NSF of China (Grant: 71333014, 71571007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Le Courtois.

Appendices

Appendix A

1.1 Proof of Proposition 2.1

Proof

$$\begin{aligned} \begin{array}{cl} V_0&{}=E_{{\mathbb {Q}}}\left( e^{-\int \limits _0^t r_u \mathrm {d}u} V_t\right) \\ &{}=V_0 E_{{\mathbb {P}}}\left( \text {exp}\left( {\int \limits ^t_0 (\mu _s-r_s) ds+\int \limits ^t_0 (1+\xi _s) \sigma _s \mathrm {d}W_s-\displaystyle \frac{1}{2} \int \limits ^t_0 \xi _s^2\sigma _s^2 \mathrm {d}s+\int \limits ^t_0 (1+\xi _s)\mathrm {d}N_s-\int \limits _0^t\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(\varvec{{\widehat{\xi }}}) \rangle \mathrm {d}s}\right) \right) \\ &{}=V_0 E_{{\mathbb {P}}}\left( \text {exp}\left( \int \limits _0^t \left( \mu _s-r_s+\displaystyle \frac{1}{2}{\sigma _s^2+\xi _s \sigma _s^2}+\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(1+\varvec{{\widehat{\xi }}}) \rangle -\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(\varvec{{\widehat{\xi }}}) \rangle \right) \mathrm {d}s\right) \right) \\ &{}=V_0 \varvec{J}_0 \text {exp}\left( {\left( Q+\text {diag}\left( {\widehat{\mu }}_i-{\widehat{r}}_i+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2+\psi _i(1+{\widehat{\xi }}_{i})-\psi _i({\widehat{\xi }}_{i})\right) \right) t}\right) {\mathbf {1}}_n. \end{array} \end{aligned}$$

Let \(\varvec{d}\) be a null vector. Inserting it into Lemma 2.1, we readily have:

$$\begin{aligned} \varvec{J}_0e^{Qt}{\mathbf {1}}_n=1. \end{aligned}$$
(A.1)

The sufficient condition of the martingale condition is then obvious. Denote

$$\begin{aligned} f(t)=\varvec{J}_0 \text {exp}\left( {\left( Q+\text {diag}\left( {\widehat{\mu }}_i-{\widehat{r}}_i+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2+\psi _i(1+{\widehat{\xi }}_{i})-\psi _i({\widehat{\xi }}_{i})\right) \right) t}\right) {\mathbf {1}}_n. \end{aligned}$$

Assume that the martingale condition is satisfied:

$$\begin{aligned} f(t)=1 \quad \forall t. \end{aligned}$$

Then,

$$\begin{aligned} f'(0)=\varvec{J}_0{\left( Q+\text {diag}\left( {\widehat{\mu }}_i-{\widehat{r}}_i+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2+\psi _i(1+{\widehat{\xi }}_{i})-\psi _i({\widehat{\xi }}_{i})\right) \right) }{\mathbf {1}}_n=0. \end{aligned}$$

Similarly, eq. (A.1) means

$$\begin{aligned} \varvec{J}_0 Q{\mathbf {1}}_n=0. \end{aligned}$$

Therefore,

$$\begin{aligned} \varvec{J}_0 {\left( \text {diag}\left( {\widehat{\mu }}_i-{\widehat{r}}_i+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2+\psi _i(1+{\widehat{\xi }}_{i})-\psi _i({\widehat{\xi }}_{i})\right) \right) }{\mathbf {1}}_n=0. \end{aligned}$$

Since this equation is satisfied for any initial vector of states \(\varvec{J}_0\),

$$\begin{aligned} {\widehat{\mu }}_i-{\widehat{r}}_i+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2+\psi _i(1+{\widehat{\xi }}_{i})-\psi _i({\widehat{\xi }}_{i})=0 \quad \forall i=1,2,\ldots ,n. \end{aligned}$$

\(\square \)

1.2 Proof of Proposition 2.2

Proof

Because the Markov chain \(\varvec{J}\) is not changed under \({\mathbb {Q}}\) and

$$\begin{aligned} \begin{array}{cl} E_{{\mathbb {Q}}}(e^{uX_t})=&{}E_{{\mathbb {P}}}\left( \text {exp}\left( {u \int \limits ^t_0 \mu _s ds+\int \limits ^t_0 (u+\xi _s) \sigma _s \mathrm {d}W_s-\displaystyle \frac{1}{2}\int \limits ^t_0 \xi _s^2 \sigma _s^2 \mathrm {d}s+\int \limits ^t_0 (u+\xi _s)\mathrm {d}N_s-\int \limits _0^t\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(\varvec{{\widehat{\xi }}}) \rangle \mathrm {d}s}\right) \right) \\ &{}=E_{{\mathbb {P}}}\left( \text {exp}\left( \int \limits _0^t \left( \mu _s u+\displaystyle \frac{1}{2}\sigma _s^2 u^2+\xi _s \sigma _s^2 u +\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(\varvec{{\widehat{\xi }}}+u) \rangle -\langle \varvec{J}_s,\varvec{{\widehat{\psi }}}(\varvec{{\widehat{\xi }}}) \rangle \right) \mathrm {d}s\right) \right) \\ &{}={\varvec{J}_0}\text {exp}\left( {\left( Q+\text {diag}\left( {\widehat{\mu }}_i u+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2 u^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2 u +\psi _i({\widehat{\xi }}_{i}+u)-\psi _i({\widehat{\xi }}_{i})\right) \right) t}\right) {\mathbf {1}}_n, \end{array} \end{aligned}$$

the Laplace exponent \(\varphi _i^*(u)\) of \(X^i\) under \({\mathbb {Q}}\) is

$$\begin{aligned} \varphi _i^*(u)={\widehat{\mu }}_i u+\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2 u^2 +{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2 u +\psi _i({\widehat{\xi }}_{i}+u)-\psi _i({\widehat{\xi }}_{i}). \end{aligned}$$

The term \(\displaystyle \frac{1}{2}{{\widehat{\sigma }}_i}^2 u^2+{\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2 u\) corresponds to \({\widehat{\sigma }}_i W_1\sim N({\widehat{\xi }}_{i}{{\widehat{\sigma }}_i}^2,{{\widehat{\sigma }}_i}^2)\). Then, we have that \(W^*\) defined by \(W^*_t=W_t-\int \limits _0^t \xi _{s}\sigma _s \mathrm {d}s\) is a standard Brownian motion under \({\mathbb {Q}}\) with respect to \({\mathcal {F}}\).

Denote

$$\begin{aligned} \omega _i=\displaystyle \frac{{\widehat{p}}_i{\widehat{\eta }}_{i}}{{\widehat{\eta }}_{i}-{\widehat{\xi }}_{i}}+\displaystyle \frac{{\widehat{q}}_i{\widehat{\theta }}_{i}}{{\widehat{\theta }}_{i}+{\widehat{\xi }}_{i}}. \end{aligned}$$

After simple computations, we obtain:

$$\begin{aligned} \varphi _i^*(u)=\left( {\widehat{\mu }}_i+{\widehat{\xi }}_i {\widehat{\sigma }}_i^2\right) u+\displaystyle \frac{1}{2}{\widehat{\sigma }}_i^2 u^2+{\widehat{\lambda }}_i \omega _i \left( \displaystyle \frac{1}{\omega _i}\left( \displaystyle \frac{{\widehat{p}}_i{\widehat{\eta }}_{i}}{{\widehat{\eta }}_{i}-{\widehat{\xi }}_i}\right) \displaystyle \frac{{\widehat{\eta }}_{i}-{\widehat{\xi }}_i}{{\widehat{\eta }}_{i}-{\widehat{\xi }}_i-u} +\displaystyle \frac{1}{\omega _i}\left( \displaystyle \frac{{\widehat{q}}_i {\widehat{\theta }}_i}{{\widehat{\theta }}_{i}+{\widehat{\xi }}_i}\right) \displaystyle \frac{{\widehat{\theta }}_{i}+{\widehat{\xi }}_i}{{\widehat{\theta }}_{i}+{\widehat{\xi }}_i+u}-1 \right) . \end{aligned}$$

This expression shows that \(X^i\) remains a double exponential jump diffusion process under \({\mathbb {Q}}\) where

$$\begin{aligned} \left\{ \begin{aligned} {\widehat{\mu }}^*_i&={\widehat{\mu }}_i+{\widehat{\xi }}_i {\widehat{\sigma }}_i^2 \\ {\widehat{\sigma }}^*_i&={\widehat{\sigma }}_i \\ {\widehat{\lambda }}^*_i&={\widehat{\lambda }}_i \omega _i \\ p_i^*&=\displaystyle \frac{1}{\omega _i}\left( \displaystyle \frac{{\widehat{p}}_i{\widehat{\eta }}_{i}}{{\widehat{\eta }}_{i}-{\widehat{\xi }}_{i}}\right) \\ q_i^*&=\displaystyle \frac{1}{\omega _i}\left( \displaystyle \frac{{\widehat{q}}_i {\widehat{\theta }}_i}{{\widehat{\theta }}_{i}+{\widehat{\xi }}_i}\right) \\ {\widehat{\eta }}_{i}^*&={\widehat{\eta }}_{i}-{\widehat{\xi }}_{i} \\ {\widehat{\theta }}_{i}^*&={\widehat{\theta }}_{i}+{\widehat{\xi }}_{i}\\ \end{aligned} \right. . \end{aligned}$$

From \(E_{{\mathbb {Q}}}(e^{X_t})=e^{\int \limits _0^t r_s \mathrm {d}s}\), we see that \({\widehat{\mu }}^*_i\) satisfies

$$\begin{aligned} {\widehat{\mu }}^*_i={\widehat{r}}_i-\displaystyle \frac{1}{2} {{\widehat{\sigma }}_i^{*^2}}-{\widehat{\lambda }}^*_i\left( \displaystyle \frac{{\widehat{p}}_i^*{\widehat{\eta }}_{i}^*}{{\widehat{\eta }}_{i}^*-1}+\displaystyle \frac{{\widehat{q}}_i^*{\widehat{\theta }}_{i}^*}{{\widehat{\theta }}_{i}^*+1}-1\right) . \end{aligned}$$

Therefore, the structure of the regime switching double exponential jump diffusion process is unchanged under the new measure \({\mathbb {Q}}\). \(\square \)

1.3 Proof of Proposition 3.1

Proof

Let the \(2n \times 1\) vector \(\varvec{{\bar{h}}}=({\bar{h}}_1,\ldots ,{\bar{h}}_{2n})'\) and \(\varvec{h}^-_{\tau }=\langle \varvec{Y}_{\tau },\varvec{{\widehat{h}}^-} \rangle \) where the \(1 \times 3n\) vector \(\varvec{{\widehat{h}}^-} =(0,\ldots ,0,\varvec{{\bar{h}}}').\) From the Markov chain theory, we have:

$$\begin{aligned} \begin{array}{cl} E\left( e^{-\int \limits _0^{\tau } a_s \mathrm {d}s}\varvec{h}^-_{\tau }\right)&=\varvec{Y}_0W^{(\varvec{a},-)}e^{Q^{(\varvec{a},-)}(x-b)}\varvec{{\bar{h}}}. \end{array} \end{aligned}$$

When \(\varvec{Y}_{\tau } \in E^0\), \(X_{\tau }=b\). When \(\varvec{Y}_{\tau } \in E^-\) and \(\varvec{Y}_{\tau }=\varvec{s}_{2n+i}\), the overshoot \(|X_{\tau }-b|\) is independent of \(\tau \) and has an exponential distribution with parameter \({\widehat{\theta }}_i\). Then, we have:

$$\begin{aligned} \begin{array}{cl} E\left( e^{-\int \limits _0^{\tau } a_s \mathrm {d}s+wX_{\tau }}\varvec{h}_{\tau }\right) &{}=\sum \limits _{i=1}^{n}\left( E\left( e^{-\int \limits _0^{\tau }a_s \mathrm {d}s +w b}\mathbb {1}_{\{\varvec{Y}_{\tau }=\varvec{s}_{n+i}\}}{\widehat{h}}_i\right) \right. \\ &{}\quad \left. +E\left( e^{-\int \limits _0^{\tau }a_s \mathrm {d}s +w b}\mathbb {1}_{\{\varvec{Y}_{\tau }=\varvec{s}_{2n+i}\}}{\widehat{h}}_i\right) E\left( e^{w(X_{\tau }-b)} |\varvec{Y}_{\tau }=\varvec{s}_{2n+i}\right) \right) . \end{array} \end{aligned}$$

Since

$$\begin{aligned} \begin{array}{cl} E\left( e^{w(X_{\tau }-b)} |\varvec{Y}_{\tau }=\varvec{s}_{2n+i}\right) &{}=\int \limits _{-\infty }^{0} e^{wx} {\widehat{\theta }}_{i} e^{{\widehat{\theta }}_{i}x} \mathrm {d}x\\ &{}=\displaystyle \frac{{\widehat{\theta }}_{i}}{w+{\widehat{\theta }}_{i}}, \end{array} \end{aligned}$$

we have:

$$\begin{aligned} \begin{array}{cl} E\left( e^{-\int \limits _0^{\tau } a_s \mathrm {d}s+wX_{\tau }}\varvec{h}_{\tau }\right) =\varvec{Y}_0W^{(\varvec{a},-)}e^{Q^{(\varvec{a},-)}(x-b)+wb I_{2n}}\varvec{{\widetilde{h}}}. \end{array} \end{aligned}$$

\(\square \)

1.4 Proof of Lemma 3.2

Proof

The \(Q^{(\varvec{a},+)}\) and \(Q^{(\varvec{a},-)}\) are the generator matrices. Then, we have

$$\begin{aligned} e^{Q^{(\varvec{a},+)}}{\mathbf {1}}_{2n}\le {\mathbf {1}}_{2n}, \qquad e^{Q^{(\varvec{a},-)}}{\mathbf {1}}_{2n}\le {\mathbf {1}}_{2n}. \end{aligned}$$

The eigenvalues of \(e^{Q^{(\varvec{a},+)}}\) and \(e^{Q^{(\varvec{a},-)}}\) are \(e^{{\widetilde{\beta }}_1},\ldots ,e^{{\widetilde{\beta }}_{2n}}\) and \(e^{{\bar{\beta }}_1},\ldots ,e^{{\bar{\beta }}_{2n}}\), respectively. From the Perron-Frobenius theorem, we obtain

$$\begin{aligned} \max \{|e^{{\widetilde{\beta }}_i}|,\ i=1,\ldots ,2n \}\le 1, \qquad \max \{|e^{{\bar{\beta }}_j}|,\ j=1,\ldots ,2n \}\le 1, \end{aligned}$$

where |z| is the modulus of \(z \in {\mathbb {C}}\). Then,

$$\begin{aligned} \mathfrak {R}({\widetilde{\beta }}_i)\le 0,\ i=1,\ldots ,2n, \qquad \mathfrak {R}({\bar{\beta }}_j)\le 0,\ j=1,\ldots ,2n. \end{aligned}$$

The

$$\begin{aligned} f({\widetilde{\beta }}_i)=0,\ i=1,\ldots ,2n, \qquad f(-{\bar{\beta }}_j)=0,\ j=1,\ldots ,2n \end{aligned}$$

gives the results. \(\square \)

Appendix B

The valuation of balance sheet components is conducted under the risk-neutral measure \({\mathbb {Q}}\). It makes use of Lemmas 2.1 and 3.1, Corollary 3.1 and Proposition 3.1.

1.1 Valuation of Straight Bonds

We have:

$$\begin{aligned} \begin{array}{cl} B=D_1\int \limits _0^{\infty } me^{-mt}B(t)\mathrm {d}t \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{cl} B&{}=D_1E\left( \int \limits _0^{\infty } me^{-mt}\int \limits _0^{\min (t,\tau _2)}e^{-\int \limits _0^s r_u \mathrm {d}u}c_1 \mathrm {d}s \mathrm {d}t\right) + D_1 E\left( \int \limits _0^{\infty } me^{-mt} \mathbb {1}_{\{t\ge \tau _2\}}e^{-\int \limits _0^{\tau _2} r_u \mathrm {d}u}\pi _1 \mathrm {d}t\right) \\ &{}\quad +D_1 E\left( \int \limits _0^{\infty } me^{-mt} \mathbb {1}_{\{t< \tau _2\}}e^{-\int \limits _0^t r_u \mathrm {d}u} \mathrm {d}t \right) . \end{array} \end{aligned}$$

Then, by the Fubini theorem, we exchange the order of integration for t and s and obtain:

$$\begin{aligned} \begin{array}{cl} B&{}=D_1 E\left( \int \limits _0^{\tau _2} m c_1e^{-\int \limits _0^s r_u \mathrm {d}u} \int \limits _s^{\infty }e^{-mt}\mathrm {d}t \mathrm {d}s \right) + \pi _1 D_1 E\left( e^{-\int \limits _0^{\tau _2} (r_u+m)\mathrm {d}u} \right) \\ &{}\quad +mD_1 E\left( \int \limits _0^{\tau _2} e^{-\int \limits _0^t (r_u+m)\mathrm {d}u} \mathrm {d}t \right) . \end{array} \end{aligned}$$

Further, we obtain:

$$\begin{aligned} \begin{array}{cl} B&=\underbrace{(c_1+m) D_1E\left( \int \limits _0^{\tau _2} e^{-\int \limits _0^s (r_u+m) \mathrm {d}u}\mathrm {d}s \right) }_{B_1}+ \underbrace{\pi _1 D_1 E\left( e^{-\int \limits _0^{\tau _2} (r_u+m)\mathrm {d}u} \right) }_{B_2}. \end{array} \end{aligned}$$

From Corollary 3.1, we obtain:

$$\begin{aligned} \begin{array}{cl} B_1&=(c_1+m) D_1 \left( \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+m,-)}e^{Q^{(\varvec{{\widehat{r}}}+m,-)}\left( x-x_C\right) }H(0)-\varvec{J}_0\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n. \end{array} \end{aligned}$$

Then, we compute:

$$\begin{aligned} B_2=\pi _1 D_1 E\left( e^{-\int \limits _0^{\tau _2} \left( r_u+m\right) \mathrm {d}u} \right) = \pi _1 D_1 \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+m,-)}e^{Q^{(\varvec{{\widehat{r}}}+m,-)}\left( x-x_C\right) }{\mathbf {1}}_{2n}. \end{aligned}$$

Finally, we have:

$$\begin{aligned} \begin{array}{cl} B&{}=(c_1+m) D_1 \left( \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+m,-)}e^{Q^{(\varvec{{\widehat{r}}}+m,-)}\left( x-x_C\right) }H(0)-\varvec{J}_0\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad +\pi _1 D_1 \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+m,-)}e^{Q^{(\varvec{{\widehat{r}}}+m,-)}\left( x-x_C\right) }{\mathbf {1}}_{2n}. \end{array} \end{aligned}$$

1.2 Valuation of Deposit Insurance

We compute:

$$\begin{aligned} \begin{array}{cl} E\left( \left. \int \limits _0^{\infty }ke^{-kt} \int \limits _{\tau _2}^{\tau _2+t}e^{-\int \limits _{\tau _2}^s r_u \mathrm {d}u}c_2D_2 \mathrm {d}s \mathrm {d}t\right| {\mathcal {F}}_{\tau _2}\right) &{}=E\left( \left. k c_2 D_2\int \limits _{\tau _2}^{\infty }\int \limits _{s-\tau _2}^{\infty } e^{-kt}e^{-\int \limits _{\tau _2}^s r_u \mathrm {d}u} \mathrm {d}t\mathrm {d}s \right| {\mathcal {F}}_{\tau _2}\right) \\ &{}=c_2 D_2 E\left( \left. \int \limits _{\tau _2}^{\infty }e^{-\int \limits _{\tau _2}^s \Big (k+r_u\Big )\mathrm {d}u}\mathrm {d}s \right| {\mathcal {F}}_{\tau _2}\right) \\ &{}=-c_2 D_2 \varvec{J}_{\tau _2}\Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n \\ \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{cl} E\left( \left. \int \limits _0^{\infty }ke^{-kt} e^{-\int \limits _{\tau _2}^{\tau _2+t} r_u \mathrm {d}u}D_2 \mathrm {d}t\right| {\mathcal {F}}_{\tau _2}\right) &{}=\int \limits _0^{\infty } kD_2 \varvec{J}_{\tau _2} e^{\Big (Q-\text {diag}\big (k+\varvec{{\widehat{r}}}\big )\Big )t}{\mathbf {1}}_n \mathrm {d}t\\ &{}=-kD_2 \varvec{J}_{\tau _2} \Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n. \end{array} \end{aligned}$$

Then,

$$\begin{aligned} \begin{array}{cl} DI&=\sum \limits _{i=1}^n E\left( e^{-\int \limits _0^{\tau _2} r_u \mathrm {d}u}\mathbb {1}_{\varvec{J}_{\tau _2}=\varvec{e}_i} \bigg (-(c_2+k) D_2 {\varvec{e}_i}\Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n-\pi _2 D_2\bigg )^+\right) . \end{array} \end{aligned}$$

Finally, we define the \(n \times 1\) vector \(\varvec{K}\) for simple representation and obtain:

$$\begin{aligned} \begin{array}{cl} DI&=\varvec{Y}_0W^{(r,-)}e^{Q^{(r,-)}\left( x-x_C\right) }H(0)\varvec{K}. \end{array} \end{aligned}$$

1.3 Valuation of CoCos

We have:

$$\begin{aligned} \begin{array}{cl} C=D_3\int \limits _0^{\infty }le^{-lt}C(t)\mathrm {d}t \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{cl} C&{}=D_3E\left( \int \limits _0^{\infty }le^{-lt} \int \limits _0^{\min (t,\tau _1)}e^{-\int \limits _0^s r_u \mathrm {d}u}c_3 \mathrm {d}s \mathrm {d}t \right) +(1-\rho )E\left( \int \limits _0^{\infty }le^{-lt}\mathbb {1}_{\{{\tau _1}\le t\}}e^{-\int \limits _0^{\tau _1}r_u \mathrm {d}u }S_{\tau _1} \mathrm {d}t \right) \\ &{}\quad +D_3E\left( \int \limits _0^{\infty }le^{-lt}\mathbb {1}_{\{{\tau _1}>t\}}e^{-\int \limits _0^t r_u \mathrm {d}u} \mathrm {d}t \right) . \end{array} \end{aligned}$$

Further, we obtain:

$$\begin{aligned} \begin{array}{cl} C&{}=c_3 D_3E\left( \int \limits _0^{\tau _1} e^{-\int \limits _0^s (l+r_u) \mathrm {d}u}\mathrm {d}s \right) +\Bigg (1-\rho \Bigg )E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u }S_{\tau _1} \right) +l D_3 E\left( \int \limits _0^{\tau _1}e^{-\int \limits _0^t (r_u+l) \mathrm {d}u} \mathrm {d}t \right) \\ \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{cl} C&=\underbrace{D_3(c_3+l)E\left( \int \limits _0^{\tau _1} e^{-\int \limits _0^s (l+r_u) \mathrm {d}u}\mathrm {d}s \right) }_{C_1}+\underbrace{\Bigg (1-\rho \Bigg )E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u }S_{\tau _1} \right) }_{C_2}. \end{array} \end{aligned}$$

From Corollary 3.1, we have:

$$\begin{aligned} \begin{array}{cl} C_1&=D_3(c_3+l)\left( \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }H(0)-\varvec{J}_0\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+l)\Big )^{-1}{\mathbf {1}}_n. \end{array} \end{aligned}$$

We compute \(S_{\tau _1}\) by subtracting the value of straight bonds and deposits from the bank’s value at conversion time \(\tau _1\). The bank’s value at conversion time \(\tau _1\) is

$$\begin{aligned} \begin{array}{cl} BV_{\tau _1}&{}=V_{\tau _1}+\underbrace{\gamma E\left( \left. \int \limits _{\tau _1}^{\tau _2}e^{-\int \limits _{\tau _1}^s r_u \mathrm {d}u} \bigg (c_1D_1+c_2D_2\bigg ) \mathrm {d}s\right| {\mathcal {F}}_{\tau _1}\right) }_{\text {tax benefits}}+DI_{\tau _1}\\ &{}\quad -\underbrace{E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u}\left( \left( 1-\kappa \right) V_{\tau _2}-\pi _1D_1-\pi _2D_2\right) \right| {\mathcal {F}}_{\tau _1}\right) }_{\text {bankruptcy costs}}-\underbrace{E\left( \left. \int \limits _{\tau _1}^{\tau _2} e^{-\int \limits _{\tau _1}^{s} r_u \mathrm {d}u}\varsigma D_2\mathrm {d}s\right| {\mathcal {F}}_{\tau _1}\right) }_{\text {deposit insurance premiums}} \end{array} \end{aligned}$$

so that

$$\begin{aligned} \begin{array}{cl} BV_{\tau _1}&{}=V_{\tau _1}+(\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2) \left( \left. E\left( e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \varvec{J}_{\tau _2}\right| {\mathcal {F}}_{\tau _1}\right) -\varvec{J}_{\tau _1}\right) \left( Q-\text {diag}(\varvec{{\widehat{r}}})\right) ^{-1}{\mathbf {1}}_n\\ &{}\quad +DI_{\tau _1}-(1-\kappa )V_0 E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} e^{X_{\tau _2}}\right| {\mathcal {F}}_{\tau _1}\right) +(\pi _1D_1+\pi _2D_2)E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \right| {\mathcal {F}}_{\tau _1}\right) . \end{array} \end{aligned}$$

Then, the value of the bank’s equity \(S_{\tau _1}\) is

$$\begin{aligned} S_{\tau _1}=BV_{\tau _1}-B_{\tau _1}-D_{\tau _1}. \end{aligned}$$

Then, we have:

$$\begin{aligned} \begin{array}{cl} S_{\tau _1}&{}=V_{\tau _1}+\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big ) \left( E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \varvec{J}_{\tau _2}\right| {\mathcal {F}}_{\tau _1}\right) -\varvec{J}_{\tau _1}\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad +E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u}\bigg (-(c_2+k) D_2 \varvec{J}_{\tau _2}\Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n-\pi _2 D_2\bigg )^+ \right| {\mathcal {F}}_{\tau _1}\right) \\ &{}\quad -(1-\kappa )V_0 E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} e^{X_{\tau _2}}\right| {\mathcal {F}}_{\tau _1}\right) +(\pi _1D_1+\pi _2D_2)E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \right| {\mathcal {F}}_{\tau _1}\right) \\ &{}\quad -(c_1+m)D_1\left( E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2}(r_u+m)\mathrm {d}u}\varvec{J}_{\tau _2}\right| {\mathcal {F}}_{\tau _1}\right) -\varvec{J}_{\tau _1}\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad -\pi _1 D_1 E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} \Big (r_u+m\Big )\mathrm {d}u} \right| {\mathcal {F}}_{\tau _1} \right) \\ &{}\quad -(c_2+k)D_2\left( E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2}(r_u+k)\mathrm {d}u}\varvec{J}_{\tau _2}\right| {\mathcal {F}}_{\tau _1}\right) -\varvec{J}_{\tau _1}\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+k)\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad -\pi _2 D_2 E\left( \left. e^{-\int \limits _{\tau _1}^{\tau _2} \Big (r_u+k\Big )\mathrm {d}u} \right| {\mathcal {F}}_{\tau _1}\right) . \end{array} \end{aligned}$$

Further, we have:

$$\begin{aligned} \begin{array}{cl} C_2&{}=(1-\rho )\left( V_0 e^{x_B} \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }\varvec{{\widetilde{I}}}\right. \\ &{}\quad +\underbrace{\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big ) \left( E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \varvec{J}_{\tau _2} \right) -E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}\varvec{J}_{\tau _1} \right) \right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n}_{T_1}\\ &{}\quad +\underbrace{E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u}\bigg (-(c_2+k) D_2 \varvec{J}_{\tau _2} \Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n-\pi _2 D_2\bigg )^+\right) }_{U_1}\\ &{}\quad -\underbrace{(1-\kappa )V_0 E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} e^{X_{\tau _2}}\right) }_{E_1}\\ &{}\quad +\underbrace{(\pi _1D_1+\pi _2D_2)E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}e^{-\int \limits _{\tau _1}^{\tau _2} r_u \mathrm {d}u} \right) }_{R_1}\\ &{}\quad -\underbrace{(c_1+m)D_1\left( E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}e^{-\int \limits _{\tau _1}^{\tau _2}(r_u+m)\mathrm {d}u}\varvec{J}_{\tau _2}\right) -E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}\varvec{J}_{\tau _1}\right) \right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n}_{T_2}\\ &{}\quad -\underbrace{\pi _1 D_1 E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}e^{-\int \limits _{\tau _1}^{\tau _2} \Big (r_u+m\Big )\mathrm {d}u} \right) }_{R_2}\\ &{}\quad -\underbrace{(c_2+k)D_2\left( E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}e^{-\int \limits _{\tau _1}^{\tau _2}(r_u+k)\mathrm {d}u}\varvec{J}_{\tau _2}\right) -E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}\varvec{J}_{\tau _1}\right) \right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+k)\Big )^{-1}{\mathbf {1}}_n}_{T_3}\\ &{}\quad -\left. \underbrace{\pi _2 D_2 E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}e^{-\int \limits _{\tau _1}^{\tau _2} \Big (r_u+k\Big )\mathrm {d}u} \right) }_{R_3}\right) . \end{array} \end{aligned}$$

Note that the computation of \(T_2, T_3\) and \(R_2, R_3\) are the same as that of \(T_1\) and \(R_1\), respectively. Thus, we focus on the calculation of \(T_1, U_1, E_1, R_1\). Then, we have:

  • $$\begin{aligned} \begin{array}{cl} T_1&{}=\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big ) \left( E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \varvec{J}_{\tau _1} \right) \right. \\ &{}\quad +E\left( \mathbb {1}_{\{X_{\tau _1}> x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \varvec{Y}_{\tau _1} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }H(0)\right) \\ &{}\quad \left. -\varvec{Y}_0 W^{(\varvec{{\widehat{r}}} +l,-)}e^{Q^{( \varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n, \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} U_1&{}=E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \bigg (-(c_2+k) D_2 \varvec{J}_{\tau _1} \Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n-\pi _2 D_2\bigg )^+\right) \\ &{}\quad +E\left( \mathbb {1}_{\{X_{\tau _1}> x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \varvec{Y}_{\tau _1} W^{( \varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }H(0)\varvec{K}\right) , \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} E_1&{}=(1-\kappa )V_0\left( E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} e^{X_{\tau _1}}\right) \right. \\ &{}\quad \left. +E\left( \mathbb {1}_{\{X_{\tau _1}> x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} e^{x_C}\varvec{Y}_{\tau _1} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }\varvec{{\widetilde{I}}}\right) \right) , \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} R_1&{}=(\pi _1D_1+\pi _2D_2)\left( E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}\right) \right. \\ &{}\quad +\left. E\left( \mathbb {1}_{\{X_{\tau _1}> x_C\}} e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \varvec{Y}_{\tau _1} W^{( \varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }{\mathbf {1}}_{2n}\right) \right) . \end{array} \end{aligned}$$

Denote by \(E_i=E^+_i\cup E^0_i \cup E^-_i=\{\varvec{s}_i\}\cup \{\varvec{s}_{n+i}\} \cup \{\varvec{s}_{2n+i}\}, i=1,\ldots ,n\), the subset of E where \(E^0_i, E^+_i\) and \(E^-_i\) correspond to the state \(\varvec{e}_i\) where X moves as a pure diffusion, makes a positive jump and makes a negative jump, respectively. The first passage time across a lower barrier can only happen when X moves as a pure diffusion or makes a negative jump, that is, \(\varvec{Y}_{\tau _1}\in E^0 \cup E^-\). When \(\varvec{Y}_{\tau _1}\in E^0_i\), \(X_{\tau _1}=x_B\). When \(\varvec{Y}_{\tau _1}\in E^-_i\), the overshoot \(|X_{\tau _1}-x_B|\) is independent of \(\tau _1\) and has an exponential distribution with parameter \({\widehat{\theta }}_{i}\). Since the specific distribution of \(|X_{\tau _1}-x_B|\) depends on \(\varvec{Y}_{\tau _1}\) and \(X_{\tau _1}<x_C\) can only happen when \(\varvec{Y}_{\tau _1}\in E^-\), we have:

  • $$\begin{aligned} \begin{array}{cl} T_1&{}=\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big )\left( \sum \limits _{i=1}^{n}E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u}\mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\}}\right) \underbrace{E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}}|\varvec{Y}_{\tau _1} =\varvec{s}_{2n+i}\right) }_{Z_1}\varvec{e}_i\right. \\ &{}\quad +\sum \limits _{i=1}^{2n} E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \mathbb {1}_{\{ \varvec{Y}_{\tau _1} =\varvec{s}_{n+i}\}}\right) \underbrace{E\left( \varvec{s}_{n+i} W^{( \varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }\mathbb {1}_{\{X_{\tau _1}> x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\right) }_{Z_2}H(0) \\ &{}\quad \left. - \varvec{Y}_0 W^{( \varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n, \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} U_1&{}=\sum \limits _{i=1}^{n}E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u } \mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\}}\right) E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\right) \\ &{}\qquad \bigg (-(c_2+k) D_2 \varvec{e}_i \Big (Q-\text {diag}(k+\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n-\pi _2 D_2\bigg )^+\\ &{}\quad +\sum \limits _{i=1}^{2n}E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u } \mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\}}\right) E\left( \varvec{s}_{n+i} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }\mathbb {1}_{\{X_{\tau _1}> x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\right) H(0)\varvec{K}, \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} E_1&{}=(1-\kappa )V_0 \left( \sum \limits _{i=1}^{n} E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\}}\right) \underbrace{E\left( e^{X_{\tau _1}}\mathbb {1}_{\{X_{\tau _1}\le x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\right) }_{Z_3} \right. \\ &{}\quad \left. +e^{x_C}\sum \limits _{i=1}^{2n} E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u} \mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\}} \right) E\left( \varvec{s}_{n+i} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }\mathbb {1}_{\{X_{\tau _1}> x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\right) \varvec{{\widetilde{I}}} \right) , \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} R_1&{}=(\pi _1D_1+\pi _2D_2)\left( \sum \limits _{i=1}^{n} E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u }\mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\}} \right) E\left( \mathbb {1}_{\{X_{\tau _1}\le x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{2n+i}\right) \right. \\ &{}\quad \left. +\sum \limits _{i=1}^{2n} E\left( e^{-\int \limits _0^{\tau _1}(l+r_u) \mathrm {d}u } \mathbb {1}_{\{\varvec{Y}_{\tau _1}=\varvec{s}_{n+i}\}} \right) E\left( \varvec{s}_{n+i} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}\left( X_{\tau _1}-x_C\right) }\mathbb {1}_{\{X_{\tau _1}> x_C\}}|\varvec{Y}_{\tau _1}=\varvec{s}_{n+i} \right) {\mathbf {1}}_{2n}\right) . \end{array} \end{aligned}$$

Next, we compute three unknown terms \(Z_1, Z_2, Z_3\). Since \(X_{\tau _1}=x_B\) when \(\varvec{Y}_{\tau _1}\in E^0\), we only need calculate \(Z_2\) in the case that \(\varvec{Y}_{\tau _1}\in E^-\). Then, we have:

  • $$\begin{aligned} \begin{array}{cl} Z_1&=e^{{\widehat{\theta }}_{i}(x_C-x_B)}, \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} Z_2&{}=\varvec{s}_{2n+i} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}(x_B-x_C)}\int \limits _{(x_C-x_B)}^0 e^{Q^{(\varvec{{\widehat{r}}},-)x}}{\widehat{\theta }}_{i} e^{{\widehat{\theta }}_{i}x} \mathrm {d}x\\ &{}={\widehat{\theta }}_{i} \varvec{s}_{2n+i} W^{(\varvec{{\widehat{r}}},-)}e^{Q^{(\varvec{{\widehat{r}}},-)}(x_B-x_C)}(Q^{(\varvec{{\widehat{r}}},-)}+{\widehat{\theta }}_{i}I_{2n})^{-1}\left( I_{2n}-e^{(Q^{(\varvec{{\widehat{r}}},-)}+{\widehat{\theta }}_{i}I_{2n})(x_C-x_B)}\right) , \end{array} \end{aligned}$$
  • $$\begin{aligned} \begin{array}{cl} Z_3&{}=e^{x_B}\int \limits _{-\infty }^{(x_C-x_B)} e^x {\widehat{\theta }}_{i} e^{{\widehat{\theta }}_{i}x} \mathrm {d}x\\ &{}=\displaystyle \frac{{\widehat{\theta }}_{i}}{{\widehat{\theta }}_{i}+1}e^{({\widehat{\theta }}_{i}+1)x_C-{\widehat{\theta }}_{i} x_B}. \end{array} \end{aligned}$$

Then, we define the matrices \({\mathcal {G}}_1,{\mathcal {G}}_2,{\mathcal {G}}_3, {\mathcal {M}}\) and the vector \(\varvec{N}\) for simple representation and have:

$$\begin{aligned} \begin{array}{cl} C_2&{}=(1-\rho )\varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }\Bigg (V_0 e^{x_B} \varvec{{\widetilde{I}}}\\ &{}\quad +\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big ) \left( {\mathcal {M}}+{\mathcal {G}}_1 H(0)-H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad +\left( {\mathcal {M}}+{\mathcal {G}}_1 H(0)\right) \varvec{K} -(1-\kappa )V_0 \left( \varvec{N}+e^{x_C} {\mathcal {G}}_1 \varvec{{\widetilde{I}}}\right) \\ &{}\quad +\left( \pi _1D_1\left( {\mathcal {G}}_1-{\mathcal {G}}_2\right) + \pi _2D_2 \left( {\mathcal {G}}_1-{\mathcal {G}}_3\right) \right) {\mathbf {1}}_{2n}\\ &{}\quad -(c_1+m) D_1 \left( {\mathcal {M}}+{\mathcal {G}}_2 H(0)-H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n \\ &{}\quad -(c_2+k) D_2 \left( {\mathcal {M}}+{\mathcal {G}}_3 H(0)-H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+k)\Big )^{-1}{\mathbf {1}}_n \Bigg ). \end{array} \end{aligned}$$

Finally, by recalling that \(C=C_1+C_2\), we have:

$$\begin{aligned} \begin{array}{cl} C&{}=D_3(c_3+l)\left( \varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }H(0)-\varvec{J}_0\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+l)\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad +(1-\rho )\varvec{Y}_0 W^{(\varvec{{\widehat{r}}}+l,-)}e^{Q^{(\varvec{{\widehat{r}}}+l,-)}\left( x-x_B\right) }\Bigg (V_0 e^{x_B} \varvec{{\widetilde{I}}}\\ &{}\quad +\Big (\gamma (c_1 D_1+c_2 D_2)-\varsigma D_2\Big ) \left( {\mathcal {M}}+{\mathcal {G}}_1 H(0)-H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}})\Big )^{-1}{\mathbf {1}}_n\\ &{}\quad +\left( {\mathcal {M}}+{\mathcal {G}}_1 H(0)\right) \varvec{K} -(1-\kappa )V_0 \left( \varvec{N}+e^{x_C} {\mathcal {G}}_1 \varvec{{\widetilde{I}}}\right) \\ &{}\quad +\left( \pi _1D_1\left( {\mathcal {G}}_1-{\mathcal {G}}_2\right) + \pi _2D_2 \left( {\mathcal {G}}_1-{\mathcal {G}}_3\right) \right) {\mathbf {1}}_{2n}\\ &{}\quad -(c_1+m) D_1 \left( {\mathcal {M}}+{\mathcal {G}}_2 H(0)-H(0)\right) \Big (Q-\text {diag}(\varvec{{\widehat{r}}}+m)\Big )^{-1}{\mathbf {1}}_n \\ &{}\quad -(c_2+k) D_2 \left( {\mathcal {M}}+{\mathcal {G}}_3 H(0)-H(0)\right) \Big (Q-{\text {diag}}(\varvec{{\widehat{r}}}+k)\Big )^{-1}{\mathbf {1}}_n \Bigg ). \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Courtois, O., Su, X. Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps. Asia-Pac Financ Markets 27, 477–520 (2020). https://doi.org/10.1007/s10690-020-09304-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-020-09304-6

Keywords

Navigation