Skip to main content

Advertisement

Log in

Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC)

  • Review
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Surveillance Epidemiology, and end results program (SEER) - Cancer Stat facts: Pancreatic Cancer

  2. Klein AP (2021) Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 18:493–502. https://doi.org/10.1038/s41575-021-00457-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaddam S, Abboud Y, Oh J et al (2021) Incidence of pancreatic Cancer by Age and Sex in the US, 2000–2018. JAMA 326:2075–2077. https://doi.org/10.1001/jama.2021.18859

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shindo K, Yu J, Suenaga M et al (2017) Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol off J Am Soc Clin Oncol 35:3382–3390. https://doi.org/10.1200/JCO.2017.72.3502

    Article  CAS  Google Scholar 

  5. Hu C, Hart SN, Polley EC et al (2018) Association between inherited germline mutations in Cancer Predisposition genes and risk of pancreatic Cancer. JAMA 319:2401–2409. https://doi.org/10.1001/jama.2018.6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yurgelun MB, Chittenden AB, Morales-Oyarvide V et al (2019) Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med off J Am Coll Med Genet 21:213–223. https://doi.org/10.1038/s41436-018-0009-5

    Article  CAS  Google Scholar 

  7. Lowery MA, Wong W, Jordan EJ et al (2018) Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 110:1067–1074. https://doi.org/10.1093/jnci/djy024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salo-Mullen EE, O’Reilly EM, Kelsen DP et al (2015) Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 121:4382–4388. https://doi.org/10.1002/cncr.29664

    Article  CAS  PubMed  Google Scholar 

  9. National Comprehensive Cancer Network (2023) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Genetic/Familial High-Risk Assessment. Breast, Ovarian, and Pancreatic

  10. Stoffel EM, McKernin SE, Brand R et al (2019) Evaluating susceptibility to pancreatic Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol off J Am Soc Clin Oncol 37:153–164. https://doi.org/10.1200/JCO.18.01489

    Article  Google Scholar 

  11. Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52. https://doi.org/10.1038/nature16965

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  13. Biankin AV, Waddell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405. https://doi.org/10.1038/nature11547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo J (2021) KRAS mutation in pancreatic Cancer. Semin Oncol 48:10–18. https://doi.org/10.1053/j.seminoncol.2021.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wood LD, Yurgelun MB, Goggins MG (2019) Genetics of Familial and sporadic pancreatic Cancer. Gastroenterology 156:2041–2055. https://doi.org/10.1053/j.gastro.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  16. Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32:185–203. .e13

    Article  Google Scholar 

  17. Perkhofer L, Gout J, Roger E et al (2021) DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 70:606–617. https://doi.org/10.1136/gutjnl-2019-319984

    Article  CAS  PubMed  Google Scholar 

  18. Golan T, Hammel P, Reni M et al (2019) Maintenance olaparib for germline BRCA-Mutated metastatic pancreatic Cancer. N Engl J Med 381:317–327. https://doi.org/10.1056/NEJMoa1903387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petersen GM (2016) Familial pancreatic Cancer. Semin Oncol 43:548–553. https://doi.org/10.1053/j.seminoncol.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brune KA, Lau B, Palmisano E et al (2010) Importance of age of Onset in Pancreatic Cancer kindreds. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djp466

    Article  PubMed  Google Scholar 

  21. Porter N, Laheru D, Lau B et al (2022) Risk of pancreatic Cancer in the long-term prospective Follow-Up of familial pancreatic Cancer kindreds. J Natl Cancer Inst 114:1681–1688. https://doi.org/10.1093/jnci/djac167

    Article  PubMed  PubMed Central  Google Scholar 

  22. Petersen GM (2015) Familial pancreatic adenocarcinoma. Hematol Oncol Clin North Am 29:641–653. https://doi.org/10.1016/j.hoc.2015.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petersen GM, de Andrade M, Goggins M et al (2006) Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 15:704–710. https://doi.org/10.1158/1055-9965.EPI-05-0734

    Article  PubMed  Google Scholar 

  24. Zhen DB, Rabe KG, Gallinger S et al (2015) BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med off J Am Coll Med Genet 17:569–577. https://doi.org/10.1038/gim.2014.153

    Article  CAS  Google Scholar 

  25. Astiazaran-Symonds E, Goldstein AM (2021) A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 56:713–721. https://doi.org/10.1007/s00535-021-01806-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roberts NJ, Norris AL, Petersen GM et al (2016) Whole genome sequencing defines the genetic heterogeneity of familial pancreatic Cancer. Cancer Discov 6:166–175. https://doi.org/10.1158/2159-8290.CD-15-0402

    Article  CAS  PubMed  Google Scholar 

  27. Fountzilas E, Eliades A, Koliou G-A et al (2021) Clinical significance of Germline Cancer Predisposing variants in unselected patients with pancreatic adenocarcinoma. Cancers 13:198. https://doi.org/10.3390/cancers13020198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Astiazaran-Symonds E, Kim J, Haley JS et al (2022) A Genome-First Approach to Estimate Prevalence of Germline pathogenic variants and risk of pancreatic Cancer in Select Cancer susceptibility genes. Cancers 14:3257. https://doi.org/10.3390/cancers14133257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bychkovsky BL, Agaoglu NB, Horton C et al (2022) Differences in Cancer Phenotypes among frequent CHEK2 variants and implications for clinical care—checking CHEK2. JAMA Oncol 8:1598–1606. https://doi.org/10.1001/jamaoncol.2022.4071

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stolarova L, Kleiblova P, Janatova M et al (2020) CHEK2 germline variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 9:2675. https://doi.org/10.3390/cells9122675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varghese AM, Singh I, Singh R et al (2021) Early-onset Pancreas Cancer: clinical descriptors, Genomics, and outcomes. JNCI J Natl Cancer Inst 113:1194–1202. https://doi.org/10.1093/jnci/djab038

    Article  CAS  PubMed  Google Scholar 

  32. Mizukami K, Iwasaki Y, Kawakami E et al (2020) Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine 60:103033. https://doi.org/10.1016/j.ebiom.2020.103033

    Article  PubMed  PubMed Central  Google Scholar 

  33. Golan T, Casolino R, Biankin AV et al (2023) Germline BRCA testing in pancreatic cancer: improving awareness, timing, turnaround, and uptake. Ther Adv Med Oncol 15:17588359231189127. https://doi.org/10.1177/17588359231189127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mosele F, Remon J, Mateo J et al (2020) Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 31:1491–1505. https://doi.org/10.1016/j.annonc.2020.07.014

    Article  CAS  PubMed  Google Scholar 

  35. Kuzbari Z, Bandlamudi C, Loveday C et al (2023) Germline-focused analysis of tumour-detected variants in 49,264 cancer patients: ESMO Precision Medicine Working Group recommendations. Ann Oncol 34:215–227. https://doi.org/10.1016/j.annonc.2022.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Sawhney MS, Calderwood AH, Thosani NC et al (2022) ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 95:817–826. https://doi.org/10.1016/j.gie.2021.12.001

    Article  PubMed  Google Scholar 

  37. Klein AP (2013) Identifying people at a high risk of developing pancreatic cancer. Nat Rev Cancer 13:66–74. https://doi.org/10.1038/nrc3420

    Article  CAS  PubMed  Google Scholar 

  38. Kasi A, Al-Jumayli M, Park R et al (2020) Update on the role of poly (ADP-Ribose) polymerase inhibitors in the DNA repair-deficient pancreatic cancers: a narrative review. J Pancreat Cancer 6:107–115. https://doi.org/10.1089/pancan.2020.0010

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maxwell KN, Domchek SM, Nathanson KL, Robson ME (2016) Population frequency of germline BRCA1/2 mutations. J Clin Oncol off J Am Soc Clin Oncol 34:4183–4185. https://doi.org/10.1200/JCO.2016.67.0554

    Article  Google Scholar 

  40. Goggins M, Overbeek KA, Brand R et al (2020) Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the pancreas Screening (CAPS) Consortium. Gut 69:7–17. https://doi.org/10.1136/gutjnl-2019-319352

    Article  CAS  PubMed  Google Scholar 

  41. Halbrook CJ, Lyssiotis CA, di Magliano MP, Maitra A (2023) Pancreatic cancer: advances and challenges. Cell 186:1729–1754. https://doi.org/10.1016/j.cell.2023.02.014

    Article  CAS  PubMed  Google Scholar 

  42. Hofstatter EW, Domchek SM, Miron A et al (2011) PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer 10. https://doi.org/10.1007/s10689-011-9426-1

  43. Hsu F-C, Roberts NJ, Childs E et al (2021) Risk of pancreatic Cancer among individuals with pathogenic variants in the ATM Gene. JAMA Oncol 7:1664–1668. https://doi.org/10.1001/jamaoncol.2021.3701

    Article  PubMed  Google Scholar 

  44. Kimura H, Klein AP, Hruban RH, Roberts NJ (2021) The role of inherited pathogenic CDKN2A variants in susceptibility to pancreatic Cancer. Pancreas 50:1123–1130. https://doi.org/10.1097/MPA.0000000000001888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klatte DCF, Boekestijn B, Wasser MNJM et al (2022) Pancreatic Cancer surveillance in carriers of a germline CDKN2A pathogenic variant: yield and outcomes of a 20-Year prospective Follow-Up. J Clin Oncol off J Am Soc Clin Oncol 40:3267–3277. https://doi.org/10.1200/JCO.22.00194

    Article  CAS  Google Scholar 

  46. McWilliams RR, Wieben ED, Rabe KG et al (2011) Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet EJHG 19:472–478. https://doi.org/10.1038/ejhg.2010.198

    Article  CAS  PubMed  Google Scholar 

  47. Eckerle Mize D, Bishop M, Resse E, Sluzevich J (2009) Familial atypical multiple mole melanoma syndrome. In: Riegert-Johnson DL, Boardman LA, Hefferon T, Roberts M (eds) Cancer syndromes. National Center for Biotechnology Information (US). Bethesda (MD)

  48. Kastrinos F, Mukherjee B, Tayob N et al (2009) The risk of pancreatic Cancer in families with Lynch Syndrome. JAMA J Am Med Assoc 302:1790–1795. https://doi.org/10.1001/jama.2009.1529

    Article  CAS  Google Scholar 

  49. National Comprehensive Cancer Network (2023) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Genetic/Familial High-Risk Assessment. Colorectal

  50. ten Broeke SW, van der Klift HM, Tops CMJ et al (2018) Cancer risks for PMS2-Associated Lynch Syndrome. J Clin Oncol 36:2961–2968. https://doi.org/10.1200/JCO.2018.78.4777

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marabelle A, Le DT, Ascierto PA et al (2020) Efficacy of Pembrolizumab in patients with Noncolorectal high microsatellite Instability/Mismatch repair–deficient Cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38:1–10. https://doi.org/10.1200/JCO.19.02105

    Article  CAS  PubMed  Google Scholar 

  52. Han MY, Borazanci E (2023) A rare case of sporadic mismatch repair deficient pancreatic ductal adenocarcinoma that responded to ipilimumab and nivolumab combination treatment: case report. J Gastrointest Oncol 14:458–462. https://doi.org/10.21037/jgo-22-587

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mukherji R, Debnath D, Hartley ML, Noel MS (2022) The role of Immunotherapy in Pancreatic Cancer. Curr Oncol 29:6864–6892. https://doi.org/10.3390/curroncol29100541

    Article  PubMed  PubMed Central  Google Scholar 

  54. Giardiello FM, Brensinger JD, Tersmette AC et al (2000) Very high risk of cancer in familial peutz–Jeghers syndrome. Gastroenterology 119:1447–1453. https://doi.org/10.1053/gast.2000.20228

    Article  CAS  PubMed  Google Scholar 

  55. McGarrity TJ, Amos CI, Baker MJ (1993) Peutz-Jeghers Syndrome. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  56. Wu M, Krishnamurthy K (2023) Peutz-Jeghers Syndrome. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  57. Shelton CA, Umapathy C, Stello K et al (2018) Hereditary Pancreatitis in the United States: Survival and Rates of Pancreatic Cancer. Am J Gastroenterol 113:1376. https://doi.org/10.1038/s41395-018-0194-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Laken SJ, Petersen GM, Gruber SB et al (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83. https://doi.org/10.1038/ng0997-79

    Article  CAS  PubMed  Google Scholar 

  59. Valle L, Katz LH, Latchford A et al (2023) Position statement of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) on APC I1307K and cancer risk. J Med Genet 60:1035–1043. https://doi.org/10.1136/jmg-2022-108984

    Article  CAS  PubMed  Google Scholar 

  60. Pogue-Geile KL, Chen R, Bronner MP et al (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516. https://doi.org/10.1371/journal.pmed.0030516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bartsch DK, Langer P, Habbe N et al (2010) Clinical and genetic analysis of 18 pancreatic carcinoma/melanoma-prone families. Clin Genet 77:333–341. https://doi.org/10.1111/j.1399-0004.2009.01352.x

    Article  CAS  PubMed  Google Scholar 

  62. Ghiorzo P (2014) Genetic predisposition to pancreatic cancer. World J Gastroenterol WJG 20:10778–10789. https://doi.org/10.3748/wjg.v20.i31.10778

    Article  CAS  PubMed  Google Scholar 

  63. Ceha HM, Clement MJ, Polak MM et al (1998) Mutational analysis of the P16-binding domain of cyclin-dependent kinase 4 in tumors in the head region of the pancreas. Pancreas 17:85–88. https://doi.org/10.1097/00006676-199807000-00011

    Article  CAS  PubMed  Google Scholar 

  64. Puntervoll HE, Yang XR, Vetti HH et al (2013) Melanoma prone families with CDK4 germline mutation: phenotypic profile and associations with MC1R variants. J Med Genet 50:264–270. https://doi.org/10.1136/jmedgenet-2012-101455

    Article  CAS  PubMed  Google Scholar 

  65. Takai E, Nakamura H, Chiku S et al (2022) Whole-exome sequencing reveals new potential susceptibility genes for Japanese familial pancreatic Cancer. Ann Surg 275:e652. https://doi.org/10.1097/SLA.0000000000004213

    Article  PubMed  Google Scholar 

  66. Earl J, Galindo-Pumariño C, Encinas J et al (2020) A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine 53:102675. https://doi.org/10.1016/j.ebiom.2020.102675

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yin L, Wei J, Lu Z et al (2022) Prevalence of germline sequence variations among patients with pancreatic Cancer in China. JAMA Netw Open 5:e2148721. https://doi.org/10.1001/jamanetworkopen.2021.48721

    Article  PubMed  PubMed Central  Google Scholar 

  68. Smith AL, Alirezaie N, Connor A et al (2016) Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Lett 370:302–312. https://doi.org/10.1016/j.canlet.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  69. Wolpin BM, Rizzato C, Kraft P et al (2014) Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet 46:994–1000. https://doi.org/10.1038/ng.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma S, Tapper WJ, Collins A, Hamady ZZR (2022) Predicting Pancreatic Cancer in the UK Biobank Cohort using polygenic risk scores and diabetes Mellitus. Gastroenterology 162:1665–1674e2. https://doi.org/10.1053/j.gastro.2022.01.016

    Article  CAS  PubMed  Google Scholar 

  71. Pandey S, Gupta VK, Lavania SP (2023) Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 15:89–110. https://doi.org/10.2217/epi-2022-0177

    Article  CAS  PubMed  Google Scholar 

  72. Rah B, Banday MA, Bhat GR et al (2021) Evaluation of biomarkers, genetic mutations, and epigenetic modifications in early diagnosis of pancreatic cancer. World J Gastroenterol 27:6093–6109. https://doi.org/10.3748/wjg.v27.i36.6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geismann C, Arlt A (2020) Coming in the air: Hypoxia meets epigenetics in Pancreatic Cancer. Cells 9:2353. https://doi.org/10.3390/cells9112353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Toruner M, Fernandez-Zapico ME, Pin CL (2020) New aspects of the epigenetics of pancreatic carcinogenesis. Epigenomes 4:18. https://doi.org/10.3390/epigenomes4030018

    Article  PubMed  PubMed Central  Google Scholar 

  75. Klein AP, Wolpin BM, Risch HA et al (2018) Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 9:556. https://doi.org/10.1038/s41467-018-02942-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walsh N, Zhang H, Hyland PL et al (2019) J Natl Cancer Inst 111:557–567. https://doi.org/10.1093/jnci/djy155. Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer

  77. Li D, Duell EJ, Yu K et al (2012) Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 33:1384–1390. https://doi.org/10.1093/carcin/bgs151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoskins JW, Jia J, Flandez M et al (2014) Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis 35:2670–2678. https://doi.org/10.1093/carcin/bgu193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Janky R, Binda MM, Allemeersch J et al (2016) Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer 16:632. https://doi.org/10.1186/s12885-016-2540-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartu M, Dundr P, Nemejcova K et al (2018) The role of HNF1B in Tumorigenesis of Solid Tumours: a review of current knowledge. Folia Biol (Praha) 64:71–83

    Article  CAS  PubMed  Google Scholar 

  81. Falcomatà C, Bärthel S, Schneider G et al (2023) Context-specific determinants of the immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 13:278–297. https://doi.org/10.1158/2159-8290.CD-22-0876

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wolpin BM, Chan AT, Hartge P et al (2009) ABO Blood Group and the risk of pancreatic Cancer. JNCI J Natl Cancer Inst 101:424–431. https://doi.org/10.1093/jnci/djp020

    Article  CAS  PubMed  Google Scholar 

  83. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ et al (2009) Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41:986–990. https://doi.org/10.1038/ng.429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tamura K, Yu J, Hata T et al (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 115:4767–4772. https://doi.org/10.1073/pnas.1720588115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu J, Blackford AL, dal Molin M et al (2015) Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages. Gut 64:1783–1789. https://doi.org/10.1136/gutjnl-2014-308653

    Article  PubMed  Google Scholar 

  86. Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117. https://doi.org/10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka M, Fernández-del Castillo C, Kamisawa T et al (2017) Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 17:738–753. https://doi.org/10.1016/j.pan.2017.07.007

    Article  PubMed  Google Scholar 

  88. Vege SS, Ziring B, Jain R et al (2015) American Gastroenterological Association Institute Guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 148:819–822. https://doi.org/10.1053/j.gastro.2015.01.015

    Article  PubMed  Google Scholar 

  89. Liu J, Wang Y, Yu Y (2020) Meta-analysis reveals an association between acute pancreatitis and the risk of pancreatic cancer. World J Clin Cases 8:4416–4430. https://doi.org/10.12998/wjcc.v8.i19.4416

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hallensleben ND, Umans DS, Bouwense SA et al (2020) The diagnostic work-up and outcomes of presumed idiopathic acute pancreatitis: a post-hoc analysis of a multicentre observational cohort. United Eur Gastroenterol J 8:340–350. https://doi.org/10.1177/2050640619890462

    Article  Google Scholar 

  91. Huang BZ, Pandol SJ, Jeon CY et al (2020) New-Onset Diabetes, Longitudinal trends in metabolic markers, and risk of pancreatic Cancer in a Heterogeneous Population. Clin Gastroenterol Hepatol off Clin Pract J Am Gastroenterol Assoc 18:1812–1821e7. https://doi.org/10.1016/j.cgh.2019.11.043

    Article  CAS  Google Scholar 

  92. Pannala R, Leirness JB, Bamlet WR et al (2008) Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134:981–987. https://doi.org/10.1053/j.gastro.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  93. Gupta S, Vittinghoff E, Bertenthal D et al (2006) New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol off Clin Pract J Am Gastroenterol Assoc 4:1366–1372 quiz 1301. https://doi.org/10.1016/j.cgh.2006.06.024

    Article  Google Scholar 

  94. Singhi AD, Koay EJ, Chari ST, Maitra A (2019) Early detection of pancreatic Cancer: opportunities and challenges. Gastroenterology 156:2024–2040. https://doi.org/10.1053/j.gastro.2019.01.259

    Article  PubMed  Google Scholar 

  95. Sharma A, Kandlakunta H, Nagpal SJS et al (2018) Model to determine risk of pancreatic Cancer in patients with New-Onset diabetes. Gastroenterology 155:730–739e3. https://doi.org/10.1053/j.gastro.2018.05.023

    Article  PubMed  Google Scholar 

  96. Maitra A, Sharma A, Brand RE et al (2018) A prospective study to establish a new-onset diabetes cohort: from the Consortium for the study of chronic pancreatitis, diabetes, and pancreatic Cancer. Pancreas 47:1244. https://doi.org/10.1097/MPA.0000000000001169

    Article  PubMed  PubMed Central  Google Scholar 

  97. Michaud DS, Giovannucci E, Willett WC et al (2001) Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286:921–929. https://doi.org/10.1001/jama.286.8.921

    Article  CAS  PubMed  Google Scholar 

  98. Farias AJ, Streicher SA, Stram DO et al (2021) Racial/ethnic disparities in weight or BMI change in adulthood and pancreatic cancer incidence: the multiethnic cohort. Cancer Med 10:4097–4106. https://doi.org/10.1002/cam4.3958

    Article  PubMed  PubMed Central  Google Scholar 

  99. Naudin S, Li K, Jaouen T et al (2018) Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European prospective investigation into Cancer and Nutrition study. Int J Cancer 143:801–812. https://doi.org/10.1002/ijc.31367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lucenteforte E, La Vecchia C, Silverman D et al (2012) Alcohol consumption and pancreatic cancer: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol off J Eur Soc Med Oncol 23:374–382. https://doi.org/10.1093/annonc/mdr120

    Article  CAS  Google Scholar 

  101. Zanini S, Renzi S, Limongi AR et al (2021) A review of lifestyle and environment risk factors for pancreatic cancer. Eur J Cancer 145:53–70. https://doi.org/10.1016/j.ejca.2020.11.040

    Article  PubMed  Google Scholar 

  102. Pericleous M, Rossi RE, Mandair D et al (2014) Nutrition and pancreatic cancer. Anticancer Res 34:9–21

    CAS  PubMed  Google Scholar 

  103. Casari I, Falasca M (2015) Diet and Pancreatic Cancer Prevention. Cancers 7:2309–2317. https://doi.org/10.3390/cancers7040892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Antwi SO, Eckert EC, Sabaque CV et al (2015) Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes Control CCC 26:1583–1591. https://doi.org/10.1007/s10552-015-0652-y

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brugel M, Carlier C, Reyes-Castellanos G et al (2022) Pesticides and pancreatic adenocarcinoma: a transversal epidemiological, environmental and mechanistic narrative review. Dig Liver Dis off J Ital Soc Gastroenterol Ital Assoc Study Liver 54:1605–1613. https://doi.org/10.1016/j.dld.2022.08.023

    Article  CAS  Google Scholar 

  106. Li JJ, Zhu M, Kashyap PC et al (2021) The role of microbiome in pancreatic cancer. Cancer Metastasis Rev 40:777–789. https://doi.org/10.1007/s10555-021-09982-2

    Article  PubMed  PubMed Central  Google Scholar 

  107. McAllister F, Khan MAW, Helmink B, Wargo JA (2019) The Tumor Microbiome in Pancreatic Cancer: Bacteria and Beyond. Cancer Cell 36:577–579. https://doi.org/10.1016/j.ccell.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  108. Geller LT, Barzily-Rokni M, Danino T et al (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:1156–1160. https://doi.org/10.1126/science.aah5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Riquelme E, Zhang Y, Zhang L et al (2019) Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer outcomes. Cell 178:795–806e12. https://doi.org/10.1016/j.cell.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. León-Letelier RA, Dou R, Vykoukal J et al (2024) Contributions of the Microbiome-Derived Metabolome for Risk Assessment and Prognostication of Pancreatic Cancer. Clin Chem 70:102–115. https://doi.org/10.1093/clinchem/hvad186

    Article  PubMed  Google Scholar 

  111. Bo X, Shi J, Liu R et al Using the risk factors of pancreatic Cancer and their interactions in Cancer Screening: a case-control study in Shanghai, China. Ann Glob Health 85:103. https://doi.org/10.5334/aogh.2463

  112. Walker EJ, Goldberg D, Gordon KM et al (2021) Implementation of an embedded In-Clinic Genetic Testing Station to optimize germline testing for patients with pancreatic adenocarcinoma. Oncologist 26(e1982–e1991). https://doi.org/10.1002/onco.13968

  113. Wang Y, Golesworthy B, Cuggia A et al (2022) Oncology clinic-based germline genetic testing for exocrine pancreatic cancer enables timely return of results and unveils low uptake of cascade testing. J Med Genet 59:793–800. https://doi.org/10.1136/jmedgenet-2021-108054

    Article  CAS  PubMed  Google Scholar 

  114. Everett JN, Dettwyler SA, Jing X et al (2023) Impact of comprehensive family history and genetic analysis in the multidisciplinary pancreatic tumor clinic setting. Cancer Med 12:2345–2355. https://doi.org/10.1002/cam4.5059

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez NJ, Furniss CS, Yurgelun MB et al (2024) A Randomized Trial of two Remote Healthcare Delivery models on the uptake of genetic testing and impact on patient-reported psychological outcomes in families with pancreatic Cancer: the Genetic Education, Risk Assessment, and testing (GENERATE) study. https://doi.org/10.1053/j.gastro.2024.01.042. Gastroenterology S0016-5085(24)00129-X

  116. Placido D, Yuan B, Hjaltelin JX et al (2023) A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat Med 29:1113–1122. https://doi.org/10.1038/s41591-023-02332-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hameed BS, Krishnan UM (2022) Artificial Intelligence-Driven diagnosis of pancreatic Cancer. Cancers 14:5382. https://doi.org/10.3390/cancers14215382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yamada HY, Rao CV (2023) Pancreatic Cancer disparities among gender, race, and ethnicity: the PRECEDE Consortium outcomes and Impact. Cancer Prev Res Phila Pa 16:305–307. https://doi.org/10.1158/1940-6207.CAPR-23-0086

    Article  CAS  Google Scholar 

  119. Greenhalf W, Lévy P, Gress T et al (2020) International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatol off J Int Assoc Pancreatol IAP Al 20:910–918. https://doi.org/10.1016/j.pan.2020.05.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.S. conceptualized the manuscript. M.J. and E.S. both performed the literature search and drafted and critically revised the manuscript.

Corresponding author

Correspondence to Elena M. Stoffel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, M.F., Stoffel, E.M. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Familial Cancer (2024). https://doi.org/10.1007/s10689-024-00372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10689-024-00372-5

Keywords

Navigation