Skip to main content

Advertisement

Log in

The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Hereditary colorectal cancer accounts for approximately 30 % of all colorectal cancers, but currently only 5 % of these families can be explained by highly penetrant, inherited mutations. In the remaining 25 % it is not possible to perform a gene test to identify the family members who would benefit from prophylactic screening. Consequently, all family members are asked to follow a screening program. The purpose of this study was to localize a new gene which causes colorectal cancer. We performed a linkage analysis using data from a SNP6.0 chip in one large family with 12 affected family members. We extended the linkage analysis with microsatellites (STS) and single nucleotide polymorphisms (SNP’s) and looked for the loss of heterozygosity in tumour tissue. Furthermore, we performed the exome sequencing of one family member and we sequenced candidate genes by use of direct sequencing. Major rearrangements were excluded after karyotyping. The linkage analysis with SNP6 data revealed three candidate areas, on chromosome 2, 6 and 11 respectively, with a LOD score close to two and no negative LOD scores. After extended linkage analysis, the area on chromosome 6 was excluded, leaving areas on chromosome 2 and chromosome 11 with the highest possible LOD scores of 2.6. Two other studies have identified 11q24 as a candidate area for colorectal cancer susceptibility and this area is supported by our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

DNA:

Deoxyribonucleic acid

FAP:

Familial adenomatous polyposis

HNPCC:

Hereditary non-polyposis colorectal cancer

LOD score:

Logarithm of the odds score

LOH:

Loss of heterozygosity

MMR genes:

Mismatch repair genes

PCR:

Polymerase chain reaction

SNP:

Single nucleotide polymorphism

STS-markers:

Sequence-tagged sites

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. doi:10.3322/caac.21166

    Article  PubMed  Google Scholar 

  2. Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96:2992–3003. doi:10.1111/j.1572-0241.2001.04677.x

    Article  CAS  PubMed  Google Scholar 

  3. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85. doi:10.1056/NEJM200007133430201

    Article  CAS  PubMed  Google Scholar 

  4. Jasperson KW, Tuohy TM, Neklason DW, Burt RW (2010) Hereditary and familial colon cancer. Gastroenterology 138:2044–2058. doi:10.1053/j.gastro.2010.01.054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomaki P, Chadwick RB, Kaariainen H, Eskelinen M, Jarvinen H, Mecklin JP, de la Chapelle A (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338:1481–1487. doi:10.1056/NEJM199805213382101

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Walsh Vockley C, Kubly V, Nelson H, Michels VV, Thibodeau SN (2001) The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet 69:780–790. doi:10.1086/323658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76:1–18. doi:10.1111/j.1399-0004.2009.01230.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E (2009) Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30:197–203. doi:10.1002/humu.20942

    Article  CAS  PubMed  Google Scholar 

  9. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41:112–117. doi:10.1038/ng.283

    Article  CAS  PubMed  Google Scholar 

  10. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932. doi:10.1056/NEJMra012242

    Article  CAS  PubMed  Google Scholar 

  11. Nystrom-Lahti M, Wu Y, Moisio AL, Hofstra RM, Osinga J, Mecklin JP, Jarvinen HJ, Leisti J, Buys CH, de la Chapelle A, Peltomaki P (1996) DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet 5:763–769

    Article  CAS  PubMed  Google Scholar 

  12. Sjursen W, Haukanes BI, Grindedal EM, Aarset H, Stormorken A, Engebretsen LF, Jonsrud C, Bjornevoll I, Andresen PA, Ariansen S, Lavik LA, Gilde B, Bowitz-Lothe IM, Maehle L, Moller P (2010) Current clinical criteria for Lynch syndrome are not sensitive enough to identify MSH6 mutation carriers. J Med Genet 47:579–585. doi:10.1136/jmg.2010.077677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Vasen HF, Möslein G, Alonso A, Bernstein I, Bertario L, Blanco I, Burn J, Capella G, Egel C, Frayling I, Friedl W, Hes FJ, Hodgson S, Mecklin JP, Møller P, Nagengast F, Parc Y, Renkonen-Sinisalo, L, Sampson JR, Stormorken A, Wijnen J (2007) Guidelines for the clinical management of Lynch syndrome (hereditary nonpolyposis cancer). J Med Genet 44(6):353–362

  14. Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L, Bisgaard ML, Mohr J, Fodde R, Khan PM (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110:1020–1027

    Article  CAS  PubMed  Google Scholar 

  15. Miles A, Wardle J (2006) Adverse psychological outcomes in colorectal cancer screening: does health anxiety play a role? Behav Res Ther 44:1117–1127. doi:10.1016/j.brat.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  16. Taupin D, Chambers SL, Corbett M, Shadbolt B (2006) Colonoscopic screening for colorectal cancer improves quality of life measures: a population-based screening study. Health Qual Life Outcomes 4:82. doi:10.1186/1477-7525-4-82

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wardle FJ, Collins W, Pernet AL, Whitehead MI, Bourne TH, Campbell S (1993) Psychological impact of screening for familial ovarian cancer. J Natl Cancer Inst 85:653–657

    Article  CAS  PubMed  Google Scholar 

  18. Wardle J, Williamson S, Sutton S, Biran A, McCaffery K, Cuzick J, Atkin W (2003) Psychological impact of colorectal cancer screening. Health Psychol 22:54–59

    Article  PubMed  Google Scholar 

  19. Bisgaard ML, Jager AC, Myrhoj T, Bernstein I, Nielsen FC (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype-genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27. doi:10.1002/humu.10083

    Article  CAS  PubMed  Google Scholar 

  20. Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, Gallinger S, Bapat B, Aronson M, Hopper J, Jass J, LeMarchand L, Grove J, Potter J, Newcomb P, Terdiman JP, Conrad P, Moslein G, Goldberg R, Ziogas A, Anton-Culver H, de Andrade M, Siegmund K, Thibodeau SN, Boardman LA, Seminara D (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 293:1979–1985. doi:10.1001/jama.293.16.1979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ott J (1974) Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am J Hum Genet 26:588–597

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Launonen V, Stenback F, Puistola U, Bloigu R, Huusko P, Kytola S, Kauppila A, Winqvist R (1998) Chromosome 11q22.3-q25 LOH in ovarian cancer: association with a more aggressive disease course and involved subregions. Gynecol Oncol 71:299–304. doi:10.1006/gyno.1998.5186

    Article  CAS  PubMed  Google Scholar 

  23. Gabra H, Watson JE, Taylor KJ, Mackay J, Leonard RC, Steel CM, Porteous DJ, Smyth JF (1996) Definition and refinement of a region of loss of heterozygosity at 11q23.3-q24.3 in epithelial ovarian cancer associated with poor prognosis. Cancer Res 56:950–954

    CAS  PubMed  Google Scholar 

  24. Schaffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994) Avoiding recomputation in linkage analysis. Hum Hered 44:225–237

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698

    Article  PubMed Central  PubMed  Google Scholar 

  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Asakawa S, Sasaki T, Klobeck HG, Combriato G, Zachau HG, Shimizu N (2001) Evolutionary dynamics of the human immunoglobulin kappa locus and the germline repertoire of the kappa genes. Eur J Immunol 31:1017–1028

    Article  CAS  PubMed  Google Scholar 

  28. Derst C, Konrad M, Kockerling A, Karolyi L, Deschenes G, Daut J, Karschin A, Seyberth HW (1997) Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function. Biochem Biophys Res Commun 230:641–645. doi:10.1006/bbrc.1996.6024

    Article  CAS  PubMed  Google Scholar 

  29. Connolly KC, Gabra H, Millwater CJ, Taylor KJ, Rabiasz GJ, Watson JE, Smyth JF, Wyllie AH, Jodrell DI (1999) Identification of a region of frequent loss of heterozygosity at 11q24 in colorectal cancer. Cancer Res 59:2806–2809

    CAS  PubMed  Google Scholar 

  30. Lee AS, Seo YC, Chang A, Tohari S, Eu KW, Seow-Choen F, McGee JO (2000) Detailed deletion mapping at chromosome 11q23 in colorectal carcinoma. Br J Cancer 83:750–755. doi:10.1054/bjoc.2000.1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, Barnetson RA, Theodoratou E, Cetnarskyj R, Cartwright N, Semple C, Clark AJ, Reid FJ, Smith LA, Kavoussanakis K, Koessler T, Pharoah PD, Buch S, Schafmayer C, Tepel J, Schreiber S, Volzke H, Schmidt CO, Hampe J, Chang-Claude J, Hoffmeister M, Brenner H, Wilkening S, Canzian F, Capella G, Moreno V, Deary IJ, Starr JM, Tomlinson IP, Kemp Z, Howarth K, Carvajal-Carmona L, Webb E, Broderick P, Vijayakrishnan J, Houlston RS, Rennert G, Ballinger D, Rozek L, Gruber SB, Matsuda K, Kidokoro T, Nakamura Y, Zanke BW, Greenwood CM, Rangrej J, Kustra R, Montpetit A, Hudson TJ, Gallinger S, Campbell H, Dunlop MG (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40:631–637. doi:10.1038/ng.133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pittman AM, Webb E, Carvajal-Carmona L, Howarth K, Di Bernardo MC, Broderick P, Spain S, Walther A, Price A, Sullivan K, Twiss P, Fielding S, Rowan A, Jaeger E, Vijayakrishnan J, Chandler I, Penegar S, Qureshi M, Lubbe S, Domingo E, Kemp Z, Barclay E, Wood W, Martin L, Gorman M, Thomas H, Peto J, Bishop T, Gray R, Maher ER, Lucassen A, Kerr D, Evans GR, van Wezel T, Morreau H, Wijnen JT, Hopper JL, Southey MC, Giles GG, Severi G, Castellvi-Bel S, Ruiz-Ponte C, Carracedo A, Castells A, Forsti A, Hemminki K, Vodicka P, Naccarati A, Lipton L, Ho JW, Cheng KK, Sham PC, Luk J, Agundez JA, Ladero JM, de la Hoya M, Caldes T, Niittymaki I, Tuupanen S, Karhu A, Aaltonen LA, Cazier JB, Tomlinson IP, Houlston RS (2008) Refinement of the basis and impact of common 11q23.1 variation to the risk of developing colorectal cancer. Hum Mol Genet 17:3720–3727. doi:10.1093/hmg/ddn267-&gt

    Article  CAS  PubMed  Google Scholar 

  33. Houlston RS (2012) COGENT (COlorectal cancer GENeTics) revisited. Mutagenesis 27:143–151. doi:10.1093/mutage/ger059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Skoglund J, Djureinovic T, Zhou XL, Vandrovcova J, Renkonen E, Iselius L, Bisgaard ML, Peltomaki P, Lindblom A (2006) Linkage analysis in a large Swedish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 9q22.32-31.1. J Med Genet 43:e7. doi:10.1136/jmg.2005.033928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nieminen TT, O’Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, Ellonen P, Abdel-Rahman WM, Valo S, Mecklin JP, Jarvinen HJ, Gleizes PE, Peltomaki P (2014) Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology 147:595–598. doi:10.1053/j.gastro.2014.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Annemette Friis Mikkelsen, Ha Thi Cam Nguyen, Hanne Hadberg and Pernille Froh for their skilled laboratory work, Lone Sunde for karyotyping, and Mads Bak and Yuan Mang for exome their sequencing and bioinformatics. Rhonwyn Bisgaard is thanked for linguistic support. The work was supported financially by the “Danish Cancer Society”, “Else og Mogens Wedell-Wedellsborgs Fond” and "Nordic Cancer Union".

Conflict of interest

None.

Ethical standard

The study was approved by the Danish Data Protection Agency (J. nr. 2013-54-0582), was performed on individuals who had given their oral and written consent and was carried out in accordance with the ethical standards laid down in the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Luise Bisgaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudkjøbing, L.A., Eiberg, H., Mikkelsen, H.B. et al. The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24. Familial Cancer 14, 393–400 (2015). https://doi.org/10.1007/s10689-015-9791-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9791-2

Keywords

Navigation